ldmat {hibayes} | R Documentation |
LD variance-covariance matrix calculation
Description
To calculate density or sparse LD variance-covariance matrix with genotype in bigmemory format.
Usage
ldmat(
geno,
map = NULL,
gwas.geno = NULL,
gwas.map = NULL,
chisq = NULL,
ldchr = FALSE,
threads = 4,
verbose = FALSE
)
Arguments
geno |
the reference genotype panel in bigmemory format. |
map |
the map information of reference genotype panel, columns are: SNPs, chromosome, physical position. |
gwas.geno |
(optional) the genotype of gwas samples which were used to generate the summary data. |
gwas.map |
(optional) the map information of the genotype of gwas samples, columns are: SNPs, chromosome, physical position. |
chisq |
chi-squre value for generating sparse matrix, if n*r2 < chisq, it would be set to zero. |
ldchr |
lpgical, whether to calulate the LD between chromosomes. |
threads |
the number of threads used in computation. |
verbose |
whether to print the information. |
Value
For full ld matrix, it returns a standard R matrix, for sparse matrix, it returns a 'dgCMatrix'.
Examples
bfile_path = system.file("extdata", "demo", package = "hibayes")
data = read_plink(bfile_path)
geno = data$geno
map = data$map
xx = ldmat(geno, threads=4, verbose=FALSE) #chromosome wide full ld matrix
# xx = ldmat(geno, chisq=5, threads=4) #chromosome wide sparse ld matrix
# xx = ldmat(geno, map, ldchr=FALSE, threads=4) #chromosome block ld matrix
# xx = ldmat(geno, map, ldchr=FALSE, chisq=5, threads=4) #chromosome block + sparse ld matrix