initialize_model {hhsmm} | R Documentation |
initialize the hhsmmspec model for a specified emission distribution
Description
Initialize the hhsmmspec
model by using an initial clustering
obtained by initial_cluster
and the emission distribution
characterized by mstep and dens.emission
Usage
initialize_model(
clus,
mstep = NULL,
dens.emission = dmixmvnorm,
sojourn = NULL,
semi = NULL,
M,
verbose = FALSE,
...
)
Arguments
clus |
initial clustering obtained by |
mstep |
the mstep function of the EM algorithm with an style
simillar to that of |
dens.emission |
the density of the emission distribution with an style simillar to that of |
sojourn |
one of the following cases:
|
semi |
logical and of one of the following forms:
|
M |
maximum number of waiting times in each state |
verbose |
logical. if TRUE the outputs will be printed the normal distributions will be estimated |
... |
additional parameters of the |
Value
a hhsmmspec
model containing the following items:
-
init
initial probabilities of states -
transition
transition matrix -
parms.emission
parameters of the mixture normal emission (mu
,sigma
,mix.p
) -
sojourn
list of sojourn time distribution parameters and itstype
-
dens.emission
the emission probability density function -
mstep
the M step function of the EM algorithm -
semi
a logical vector of length nstate with the TRUE associated states are considered as semi-Markovian
Author(s)
Morteza Amini, morteza.amini@ut.ac.ir, Afarin Bayat, aftbayat@gmail.com
Examples
J <- 3
initial <- c(1, 0, 0)
semi <- c(FALSE, TRUE, FALSE)
P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J,
byrow = TRUE)
par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)),
sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)),
mix.p = list(c(0.3, 0.7), c(0.2, 0.3, 0.5), c(0.5, 0.5)))
sojourn <- list(shape = c(0, 3, 0), scale = c(0, 10, 0), type = "gamma")
model <- hhsmmspec(init = initial, transition = P, parms.emis = par,
dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi)
train <- simulate(model, nsim = c(10, 8, 8, 18), seed = 1234,
remission = rmixmvnorm)
clus = initial_cluster(train, nstate = 3, nmix = c(2 ,2, 2),ltr = FALSE,
final.absorb = FALSE, verbose = TRUE)
initmodel = initialize_model(clus = clus, sojourn = "gamma",
M = max(train$N))