initial_estimate {hhsmm} | R Documentation |
initial estimation of the model parameters for a specified emission distribution
Description
Provides the initial estimates of the model parameters of a specified emission
distribution characterized by the mstep
function, for an initial clustering
obtained by initial_cluster
Usage
initial_estimate(clus, mstep = mixmvnorm_mstep, verbose = FALSE, ...)
Arguments
clus |
an initial clustering obtained by |
mstep |
the mstep function of the EM algorithm with an style simillar to that of |
verbose |
logical. if TRUE the outputs will be printed |
... |
additional parameters of the |
Value
a list containing the following items:
-
emission
list the estimated parameterers of the emission distribution -
leng
list of waiting times in each state for each sequence -
clusters
the exact clusters of each observation (available ifltr
=FALSE) -
nmix
the number of mixture components (a vector of positive (non-zero) integers of lengthnstate
) -
ltr
logical. if TRUE a left to right hidden hybrid Markovian/semi-Markovianmodel is assumed
Author(s)
Morteza Amini, morteza.amini@ut.ac.ir, Afarin Bayat, aftbayat@gmail.com
Examples
J <- 3
initial <- c(1, 0, 0)
semi <- c(FALSE, TRUE, FALSE)
P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J,
byrow = TRUE)
par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)),
sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)),
mix.p = list(c(0.3, 0.7), c(0.2, 0.3, 0.5), c(0.5, 0.5)))
sojourn <- list(shape = c(0, 3, 0), scale = c(0, 10, 0), type = "gamma")
model <- hhsmmspec(init = initial, transition = P, parms.emis = par,
dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi)
train <- simulate(model, nsim = c(10, 8, 8, 18), seed = 1234,
remission = rmixmvnorm)
clus = initial_cluster(train, nstate = 3, nmix = c(2 ,2, 2),ltr = FALSE,
final.absorb = FALSE, verbose = TRUE)
par = initial_estimate(clus, verbose = TRUE)