image.hglasso {hglasso} | R Documentation |
Image plot of an object of class hglasso
, hcov
, or hbn
Description
This function plots a hglasso or hcov — the estimated matrix V and Z from hglasso
, hcov
, or hbn
Usage
## S3 method for class 'hglasso'
image(x, ...)
Arguments
x |
an object of class hglasso, hcov, or hbn. |
... |
additional parameters to be passed to |
Details
The estimated inverse covariance matrix from hglasso
, covariance matrix from hcov
, and estimated binary network hbn
can be decomposed as Z + V + t(V), where V is a matrix that contains hub nodes. This function creates image plots of Z and V.
Author(s)
Kean Ming Tan
References
Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.
See Also
plot.hglasso
summary.hglasso
hglasso
hcov
hbn
Examples
##############################################
# Example from Figure 1 in the manuscript
# A toy example to illustrate the results from
# Hub Graphical Lasso
##############################################
library(mvtnorm)
set.seed(1)
n=100
p=100
# A network with 4 hubs
Theta<-HubNetwork(p,0.99,4,0.1)$Theta
# Generate data matrix x
x <- rmvnorm(n,rep(0,p),solve(Theta))
x <- scale(x)
# Run Hub Graphical Lasso to estimate the inverse covariance matrix
res1 <- hglasso(cov(x),0.3,0.2,2)
# image plots for the matrix V and Z
image(res1)
dev.off()
[Package hglasso version 1.3 Index]