minModel {heuristica} | R Documentation |
Minimalist Model
Description
Fit the Minimalist heuristic by specifying columns and a dataset. It searches cues in a random order, making a decision based on the first cue that discriminates (has differing values on the two objects).
Usage
minModel(
train_data,
criterion_col,
cols_to_fit,
reverse_cues = TRUE,
fit_name = "minModel"
)
Arguments
train_data |
Training/fitting data as a matrix or data.frame. |
criterion_col |
The index of the column in train_data that has the criterion. |
cols_to_fit |
A vector of column indices in train_data, used to fit the criterion. |
reverse_cues |
Optional parameter to reverse cues as needed. By default, the model will reverse the cue values for cues with cue validity < 0.5, so a cue with validity 0 becomes a cue with validity 1. Set this to FALSE if you do not want that, i.e. the cue stays validity 0. |
fit_name |
Optional The name other functions can use to label output. It defaults to the class name. |
Value
An object of class
minModel, which can be
passed to a variety of functions to make predictions, e.g.
predictPair
and percentCorrectList
.
See Also
predictPairProb
for prediction.
Examples
## Fit column (5,4) to column (1,0), having validity 1.0, and column (0,1),
## validity 0.
train_matrix <- cbind(c(5,4), c(1,0), c(0,1))
min <- minModel(train_matrix, 1, c(2,3))
predictPair(oneRow(train_matrix, 1), oneRow(train_matrix, 2), min)