modselect {heteromixgm} | R Documentation |
modselect
Description
Model selection using the AIC, BIC and eBIC.
Usage
modselect(est, X, l1, l2, gamma)
Arguments
est |
Estimates of model obtained from cgmmd() function |
X |
A list of |
l1 |
Vector containing l1 penalty values. |
l2 |
Vector containing l2 penalty values. |
gamma |
EBIC gamma parameter. |
Value
theta_aic |
Estimated precision matrices using the AIC for model selection. |
theta_bic |
Estimated precision matrices using the BIC for model selection. |
theta_ebic |
Estimated precision matrices using the EBIC for model selection. |
Author(s)
Sjoerd Hermes, Joost van Heerwaarden and Pariya Behrouzi
Maintainer: Sjoerd Hermes sjoerd.hermes@wur.nl
References
1. Hermes, S., van Heerwaarden, J., & Behrouzi, P. (2024).
Copula graphical models for heterogeneous mixed data.
Journal of Computational and Graphical Statistics, 1-15.
Examples
X <- list(matrix(runif(25), 5, 5),matrix(runif(25), 5, 5),matrix(runif(25),
5, 5))
l1 <- c(0.4)
l2 <- c(0,0.1)
gamma <- 0.5
ncores <- 1
est <- heteromixgm(X, "Approximate", l1, l2, ncores)
modselect(est, X, l1, l2, gamma)
[Package heteromixgm version 2.0.0 Index]