heteromixgm {heteromixgm} | R Documentation |
heteromixgm
Description
This function implements either the Gibbs or approximation method within the Gaussian copula graphical model to estimate the conditional expectation for the data that not follow Gaussianity assumption (e.g. ordinal, discrete, continuous non-Gaussian, or mixed dataset).
Usage
heteromixgm(X, method, lambda1, lambda2, ncores)
Arguments
X |
A list containing |
method |
Choice between "Gibbs" and "Approximate" indicating which method to use. |
lambda1 |
Vector containing values (in [0,1]) for the sparsity
penalization of each |
lambda2 |
Vector containing values (in [0,1]) for the similarity
penalization between the |
ncores |
Number of cores to be used during parallel computing. |
Value
Z |
New transformation of the data based on given or default
|
ES |
Expectation of covariance matrix( diagonal scaled to 1) of the Gaussian copula graphical model. |
Sigma |
The covariance matrix of the latent variable given the data. |
Theta |
The inverse covariance matrix of the latent variable given the data. |
loglik |
Value of the Log likelihood under the estimated parameters. |
Author(s)
Sjoerd Hermes, Joost van Heerwaarden and Pariya Behrouzi
Maintainer: Sjoerd Hermes sjoerd.hermes@wur.nl
References
1. Hermes, S., van Heerwaarden, J., & Behrouzi, P. (2024).
Copula graphical models for heterogeneous mixed data.
Journal of Computational and Graphical Statistics, 1-15.
Examples
data(maize)
l1 <- c(0.4)
l2 <- c(0,0.1)
ncores <- 1
est <- heteromixgm(maize, "Approximate", l1, l2, ncores)