pred_noisy_input {hetGP}R Documentation

Gaussian process prediction prediction at a noisy input x, with centered Gaussian noise of variance sigma_x. Several options are available, with different efficiency/accuracy tradeoffs.

Description

Gaussian process prediction prediction at a noisy input x, with centered Gaussian noise of variance sigma_x. Several options are available, with different efficiency/accuracy tradeoffs.

Usage

pred_noisy_input(x, model, sigma_x, type = c("simple", "taylor", "exact"))

Arguments

x

design considered

model

GP

sigma_x

input variance

type

available options include

  • simple relying on a corrective term, see (McHutchon2011);

  • taylor based on a Taylor expansion, see, e.g., (Girard2003);

  • exact for exact moments (only for the Gaussian covariance).

Note

Beta version.

References

A. McHutchon and C.E. Rasmussen (2011), Gaussian process training with input noise, Advances in Neural Information Processing Systems, 1341-1349.

A. Girard, C.E. Rasmussen, J.Q. Candela and R. Murray-Smith (2003), Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting, Advances in Neural Information Processing Systems, 545-552.

Examples

################################################################################
### Illustration of prediction with input noise
################################################################################

## noise std deviation function defined in [0,1]
noiseFun <- function(x, coef = 1.1, scale = 0.25){
  if(is.null(nrow(x))) x <- matrix(x, nrow = 1)
  return(scale*(coef + sin(x * 2 * pi)))
}

## data generating function combining mean and noise fields
ftest <- function(x, scale = 0.25){
if(is.null(nrow(x))) x <- matrix(x, ncol = 1)
  return(f1d(x) + rnorm(nrow(x), mean = 0, sd = noiseFun(x, scale = scale)))
}

ntest <- 101; xgrid <- seq(0,1, length.out = ntest); Xgrid <- matrix(xgrid, ncol = 1)
set.seed(42)
Xpred <- Xgrid[rep(1:ntest, each = 100),,drop = FALSE]
Zpred <- matrix(ftest(Xpred), byrow = TRUE, nrow = ntest)
n <- 10
N <- 20
X <- matrix(seq(0, 1, length.out = n))
if(N > n) X <- rbind(X, X[sample(1:n, N-n, replace = TRUE),,drop = FALSE])
X <- X[order(X[,1]),,drop = FALSE]

Z <- apply(X, 1, ftest)
par(mfrow = c(1, 2))
plot(X, Z, ylim = c(-10,15), xlim = c(-0.1,1.1))
lines(xgrid, f1d(xgrid))
lines(xgrid, drop(f1d(xgrid)) + 2*noiseFun(xgrid), lty = 3)
lines(xgrid, drop(f1d(xgrid)) - 2*noiseFun(xgrid), lty = 3)
model <- mleHomGP(X, Z, known = list(beta0 = 0))
preds <- predict(model, Xgrid)
lines(xgrid, preds$mean, col = "red", lwd = 2)
lines(xgrid, preds$mean - 2*sqrt(preds$sd2), col = "blue")
lines(xgrid, preds$mean + 2*sqrt(preds$sd2), col = "blue")
lines(xgrid, preds$mean - 2*sqrt(preds$sd2 + preds$nugs), col = "blue", lty = 2)
lines(xgrid, preds$mean + 2*sqrt(preds$sd2 + preds$nugs), col = "blue", lty = 2)

sigmax <- 0.1
X1 <- matrix(0.5)

lines(xgrid, dnorm(xgrid, X1, sigmax) - 10, col = "darkgreen")

# MC experiment
nmc <- 1000
XX <- matrix(rnorm(nmc, X1, sigmax))
pxx <- predict(model, XX)
YXX <- rnorm(nmc, mean = pxx$mean, sd = sqrt(pxx$sd2 + pxx$nugs))
points(XX, YXX, pch = '.')

hh <- hist(YXX, breaks = 51, plot = FALSE)
dd <- density(YXX)
plot(hh$density, hh$mids, ylim = c(-10, 15))
lines(dd$y, dd$x)

# GP predictions
pin1 <- pred_noisy_input(X1, model, sigmax^2, type = "exact")
pin2 <- pred_noisy_input(X1, model, sigmax^2, type = "taylor")
pin3 <- pred_noisy_input(X1, model, sigmax^2, type = "simple")
ygrid <- seq(-10, 15,, ntest)
lines(dnorm(ygrid, pin1$mean, sqrt(pin1$sd2)), ygrid, lty = 2, col = "orange")
lines(dnorm(ygrid, pin2$mean, sqrt(pin2$sd2)), ygrid, lty = 2, col = "violet")
lines(dnorm(ygrid, pin3$mean, sqrt(pin3$sd2)), ygrid, lty = 2, col = "grey")
abline(h = mean(YXX), col = "red") # empirical mean

par(mfrow = c(1, 1))

[Package hetGP version 1.1.6 Index]