crit_MCU {hetGP} | R Documentation |
Maximum Contour Uncertainty criterion
Description
Computes MCU infill criterion
Usage
crit_MCU(x, model, thres = 0, gamma = 2, preds = NULL)
Arguments
x |
matrix of new designs, one point per row (size n x d) |
model |
|
thres |
for contour finding |
gamma |
optional weight in -|f(x) - thres| + gamma * s(x). Default to 2. |
preds |
optional predictions at |
References
Srinivas, N., Krause, A., Kakade, S, & Seeger, M. (2012).
Information-theoretic regret bounds for Gaussian process optimization
in the bandit setting, IEEE Transactions on Information Theory, 58, pp. 3250-3265.
Bogunovic, J., Scarlett, J., Krause, A. & Cevher, V. (2016).
Truncated variance reduction: A unified approach to Bayesian optimization and level-set estimation,
in Advances in neural information processing systems, pp. 1507-1515.
Lyu, X., Binois, M. & Ludkovski, M. (2018+).
Evaluating Gaussian Process Metamodels and Sequential Designs for Noisy Level Set Estimation. arXiv:1807.06712.
Examples
## Infill criterion example
set.seed(42)
branin <- function(x){
m <- 54.8104; s <- 51.9496
if(is.null(dim(x))) x <- matrix(x, nrow = 1)
xx <- 15 * x[,1] - 5; y <- 15 * x[,2]
f <- (y - 5.1 * xx^2/(4 * pi^2) + 5 * xx/pi - 6)^2 + 10 * (1 - 1/(8 * pi)) * cos(xx) + 10
f <- (f - m)/s
return(f)
}
ftest <- function(x, sd = 0.1){
if(is.null(dim(x))) x <- matrix(x, nrow = 1)
return(apply(x, 1, branin) + rnorm(nrow(x), sd = sd))
}
ngrid <- 101; xgrid <- seq(0, 1, length.out = ngrid)
Xgrid <- as.matrix(expand.grid(xgrid, xgrid))
Zgrid <- ftest(Xgrid)
n <- 20
N <- 500
X <- Xgrid[sample(1:nrow(Xgrid), n),]
X <- X[sample(1:n, N, replace = TRUE),]
Z <- ftest(X)
model <- mleHetGP(X, Z, lower = rep(0.001,2), upper = rep(1,2))
critgrid <- apply(Xgrid, 1, crit_MCU, model = model)
filled.contour(matrix(critgrid, ngrid), color.palette = terrain.colors, main = "MEE criterion")