allocate_mult {hetGP}R Documentation

Allocation of replicates on existing designs

Description

Allocation of replicates on existing design locations, based on (29) from (Ankenman et al, 2010)

Usage

allocate_mult(model, N, Wijs = NULL, use.Ki = FALSE)

Arguments

model

hetGP model

N

total budget of replication to allocate

Wijs

optional previously computed matrix of Wijs, see Wij

use.Ki

should Ki from model be used? Using the inverse of C (covariance matrix only, without noise, using ginv) is also possible

Value

vector with approximated best number of replicates per design

References

B. Ankenman, B. Nelson, J. Staum (2010), Stochastic kriging for simulation metamodeling, Operations research, pp. 371–382, 58

Examples

##------------------------------------------------------------
## Example: Heteroskedastic GP modeling on the motorcycle data
##------------------------------------------------------------
set.seed(32)

## motorcycle data
library(MASS)
X <- matrix(mcycle$times, ncol = 1)
Z <- mcycle$accel
nvar <- 1

data_m <- find_reps(X, Z, rescale = TRUE)

plot(rep(data_m$X0, data_m$mult), data_m$Z, ylim = c(-160, 90),
     ylab = 'acceleration', xlab = "time")


## Model fitting
model <- mleHetGP(X = list(X0 = data_m$X0, Z0 = data_m$Z0, mult = data_m$mult),
                  Z = Z, lower = rep(0.1, nvar), upper = rep(5, nvar),
                  covtype = "Matern5_2")
## Compute best allocation                  
A <- allocate_mult(model, N = 1000)

## Create a prediction grid and obtain predictions
xgrid <- matrix(seq(0, 1, length.out = 301), ncol = 1) 
predictions <- predict(x = xgrid, object =  model)

## Display mean predictive surface
lines(xgrid, predictions$mean, col = 'red', lwd = 2)
## Display 95% confidence intervals
lines(xgrid, qnorm(0.05, predictions$mean, sqrt(predictions$sd2)), col = 2, lty = 2)
lines(xgrid, qnorm(0.95, predictions$mean, sqrt(predictions$sd2)), col = 2, lty = 2)
## Display 95% prediction intervals
lines(xgrid, qnorm(0.05, predictions$mean, sqrt(predictions$sd2 + predictions$nugs)), 
col = 3, lty = 2)
lines(xgrid, qnorm(0.95, predictions$mean, sqrt(predictions$sd2 + predictions$nugs)), 
col = 3, lty = 2)

par(new = TRUE)
plot(NA,NA, xlim = c(0,1), ylim = c(0,max(A)), axes = FALSE, ylab = "", xlab = "")
segments(x0 = model$X0, x1 = model$X0, 
y0 = rep(0, nrow(model$X)), y1 = A, col = 'grey')
axis(side = 4)
mtext(side = 4, line = 2, expression(a[i]), cex = 0.8)       

[Package hetGP version 1.1.6 Index]