| robmlm {heplots} | R Documentation |
Robust Fitting of Multivariate Linear Models
Description
Fit a multivariate linear model by robust regression using a simple M estimator.
Usage
robmlm(X, ...)
## Default S3 method:
robmlm(
X,
Y,
w,
P = 2 * pnorm(4.685, lower.tail = FALSE),
tune,
max.iter = 100,
psi = psi.bisquare,
tol = 1e-06,
initialize,
verbose = FALSE,
...
)
## S3 method for class 'formula'
robmlm(
formula,
data,
subset,
weights,
na.action,
model = TRUE,
contrasts = NULL,
...
)
## S3 method for class 'robmlm'
print(x, ...)
## S3 method for class 'robmlm'
summary(object, ...)
## S3 method for class 'summary.robmlm'
print(x, ...)
Arguments
X |
for the default method, a model matrix, including the constant (if present) |
... |
other arguments, passed down. In particular relevant control
arguments can be passed to the to the |
Y |
for the default method, a response matrix |
w |
prior weights |
P |
two-tail probability, to find cutoff quantile for chisq (tuning constant); default is set for bisquare weight function |
tune |
tuning constant (if given directly) |
max.iter |
maximum number of iterations |
psi |
robustness weight function; |
tol |
convergence tolerance, maximum relative change in coefficients |
initialize |
modeling function to find start values for coefficients,
equation-by-equation; if absent WLS ( |
verbose |
show iteration history? ( |
formula |
a formula of the form |
data |
a data frame from which variables specified in |
subset |
An index vector specifying the cases to be used in fitting. |
weights |
a vector of prior weights for each case. |
na.action |
A function to specify the action to be taken if |
model |
should the model frame be returned in the object? |
contrasts |
optional contrast specifications; see
|
x |
a |
object |
a |
Details
These S3 methods are designed to provide a specification of a class of
robust methods which extend mlms, and are therefore compatible with
other mlm extensions, including Anova and
heplot.
Fitting is done by iterated re-weighted least squares (IWLS), using weights
based on the Mahalanobis squared distances of the current residuals from the
origin, and a scaling (covariance) matrix calculated by
cov.trob. The design of these methods were loosely
modeled on rlm.
An internal vcov.mlm function is an extension of the standard
vcov method providing for observation weights.
Value
An object of class "robmlm" inheriting from c("mlm",
"lm").
This means that the returned "robmlm" contains all the components of
"mlm" objects described for lm, plus the
following:
- weights
final observation weights
- iterations
number of iterations
- converged
logical: did the IWLS process converge?
The generic accessor functions coefficients,
effects, fitted.values and
residuals extract various useful features of the value
returned by robmlm.
Author(s)
John Fox; packaged by Michael Friendly
References
A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth & Brooks/Cole.
See Also
Examples
##############
# Skulls data
# make shorter labels for epochs and nicer variable labels in heplots
Skulls$epoch <- factor(Skulls$epoch, labels=sub("c","",levels(Skulls$epoch)))
# variable labels
vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")
# fit manova model, classically and robustly
sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
# standard mlm methods apply here
coefficients(sk.rmod)
# index plot of weights
plot(sk.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(sk.rmod$weights, pch=16, col=Skulls$epoch)
axis(side=1, at=15+seq(0,120,30), labels=levels(Skulls$epoch), tick=FALSE, cex.axis=1)
# heplots to see effect of robmlm vs. mlm
heplot(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"),
xlab=vlab[1], ylab=vlab[2], cex=1.25, lty=1)
heplot(sk.rmod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"),
add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, hyp.labels=FALSE, err.label="")
##############
# Pottery data
data(Pottery, package = "carData")
pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
car::Anova(pottery.mod)
car::Anova(pottery.rmod)
# index plot of weights
plot(pottery.rmod$weights, type="h")
points(pottery.rmod$weights, pch=16, col=Pottery$Site)
# heplots to see effect of robmlm vs. mlm
heplot(pottery.mod, cex=1.3, lty=1)
heplot(pottery.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, err.label="")
###############
# Prestige data
data(Prestige, package = "carData")
# treat women and prestige as response variables for this example
prestige.mod <- lm(cbind(women, prestige) ~ income + education + type, data=Prestige)
prestige.rmod <- robmlm(cbind(women, prestige) ~ income + education + type, data=Prestige)
coef(prestige.mod)
coef(prestige.rmod)
# how much do coefficients change?
round(coef(prestige.mod) - coef(prestige.rmod),3)
# pretty plot of case weights
plot(prestige.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(prestige.rmod$weights, pch=16, col=Prestige$type)
legend(0, 0.7, levels(Prestige$type), pch=16, col=palette()[1:3], bg="white")
heplot(prestige.mod, cex=1.4, lty=1)
heplot(prestige.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, err.label="")