robmlm {heplots} | R Documentation |
Robust Fitting of Multivariate Linear Models
Description
Fit a multivariate linear model by robust regression using a simple M estimator.
Usage
robmlm(X, ...)
## Default S3 method:
robmlm(
X,
Y,
w,
P = 2 * pnorm(4.685, lower.tail = FALSE),
tune,
max.iter = 100,
psi = psi.bisquare,
tol = 1e-06,
initialize,
verbose = FALSE,
...
)
## S3 method for class 'formula'
robmlm(
formula,
data,
subset,
weights,
na.action,
model = TRUE,
contrasts = NULL,
...
)
## S3 method for class 'robmlm'
print(x, ...)
## S3 method for class 'robmlm'
summary(object, ...)
## S3 method for class 'summary.robmlm'
print(x, ...)
Arguments
X |
for the default method, a model matrix, including the constant (if present) |
... |
other arguments, passed down. In particular relevant control
arguments can be passed to the to the |
Y |
for the default method, a response matrix |
w |
prior weights |
P |
two-tail probability, to find cutoff quantile for chisq (tuning constant); default is set for bisquare weight function |
tune |
tuning constant (if given directly) |
max.iter |
maximum number of iterations |
psi |
robustness weight function; |
tol |
convergence tolerance, maximum relative change in coefficients |
initialize |
modeling function to find start values for coefficients,
equation-by-equation; if absent WLS ( |
verbose |
show iteration history? ( |
formula |
a formula of the form |
data |
a data frame from which variables specified in |
subset |
An index vector specifying the cases to be used in fitting. |
weights |
a vector of prior weights for each case. |
na.action |
A function to specify the action to be taken if |
model |
should the model frame be returned in the object? |
contrasts |
optional contrast specifications; see
|
x |
a |
object |
a |
Details
These S3 methods are designed to provide a specification of a class of
robust methods which extend mlm
s, and are therefore compatible with
other mlm
extensions, including Anova
and
heplot
.
Fitting is done by iterated re-weighted least squares (IWLS), using weights
based on the Mahalanobis squared distances of the current residuals from the
origin, and a scaling (covariance) matrix calculated by
cov.trob
. The design of these methods were loosely
modeled on rlm
.
An internal vcov.mlm
function is an extension of the standard
vcov
method providing for observation weights.
Value
An object of class "robmlm"
inheriting from c("mlm",
"lm")
.
This means that the returned "robmlm"
contains all the components of
"mlm"
objects described for lm
, plus the
following:
- weights
final observation weights
- iterations
number of iterations
- converged
logical: did the IWLS process converge?
The generic accessor functions coefficients
,
effects
, fitted.values
and
residuals
extract various useful features of the value
returned by robmlm
.
Author(s)
John Fox; packaged by Michael Friendly
References
A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth & Brooks/Cole.
See Also
Examples
##############
# Skulls data
# make shorter labels for epochs and nicer variable labels in heplots
Skulls$epoch <- factor(Skulls$epoch, labels=sub("c","",levels(Skulls$epoch)))
# variable labels
vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")
# fit manova model, classically and robustly
sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
# standard mlm methods apply here
coefficients(sk.rmod)
# index plot of weights
plot(sk.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(sk.rmod$weights, pch=16, col=Skulls$epoch)
axis(side=1, at=15+seq(0,120,30), labels=levels(Skulls$epoch), tick=FALSE, cex.axis=1)
# heplots to see effect of robmlm vs. mlm
heplot(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"),
xlab=vlab[1], ylab=vlab[2], cex=1.25, lty=1)
heplot(sk.rmod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"),
add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, hyp.labels=FALSE, err.label="")
##############
# Pottery data
data(Pottery, package = "carData")
pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
car::Anova(pottery.mod)
car::Anova(pottery.rmod)
# index plot of weights
plot(pottery.rmod$weights, type="h")
points(pottery.rmod$weights, pch=16, col=Pottery$Site)
# heplots to see effect of robmlm vs. mlm
heplot(pottery.mod, cex=1.3, lty=1)
heplot(pottery.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, err.label="")
###############
# Prestige data
data(Prestige, package = "carData")
# treat women and prestige as response variables for this example
prestige.mod <- lm(cbind(women, prestige) ~ income + education + type, data=Prestige)
prestige.rmod <- robmlm(cbind(women, prestige) ~ income + education + type, data=Prestige)
coef(prestige.mod)
coef(prestige.rmod)
# how much do coefficients change?
round(coef(prestige.mod) - coef(prestige.rmod),3)
# pretty plot of case weights
plot(prestige.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(prestige.rmod$weights, pch=16, col=Prestige$type)
legend(0, 0.7, levels(Prestige$type), pch=16, col=palette()[1:3], bg="white")
heplot(prestige.mod, cex=1.4, lty=1)
heplot(prestige.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, err.label="")