| plot.robmlm {heplots} | R Documentation |
Plot observation weights from a robust multivariate linear models
Description
Creates an index plot of the observation weights assigned in the last
iteration of robmlm. Observations with low weights have large
residual squared distances and are potential multivariate outliers with
respect to the fitted model.
Usage
## S3 method for class 'robmlm'
plot(
x,
labels,
id.weight = 0.7,
id.pos = 4,
pch = 19,
col = palette()[1],
cex = par("cex"),
segments = FALSE,
xlab = "Case index",
ylab = "Weight in robust MANOVA",
...
)
Arguments
x |
A |
labels |
Observation labels; if not specified, uses rownames from the original data |
id.weight |
Threshold for identifying observations with small weights |
id.pos |
Position of observation label relative to the point |
pch |
Point symbol(s); can be a vector of length equal to the number of observations in the data frame |
col |
Point color(s) |
cex |
Point character size(s) |
segments |
logical; if |
xlab |
x axis label |
ylab |
y axis label |
... |
other arguments passed to |
Value
Returns invisibly the weights for the observations labeled in the plot
Author(s)
Michael Friendly
See Also
Examples
data(Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
plot(sk.rmod, col=Skulls$epoch)
axis(side=3, at=15+seq(0,120,30), labels=levels(Skulls$epoch), cex.axis=1)
# Pottery data
data(Pottery, package = "carData")
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
plot(pottery.rmod, col=Pottery$Site, segments=TRUE)
# SocialCog data
data(SocialCog)
SC.rmod <- robmlm(cbind( MgeEmotions, ToM, ExtBias, PersBias) ~ Dx,
data=SocialCog)
plot(SC.rmod, col=SocialCog$Dx, segments=TRUE)