plot.robmlm {heplots} | R Documentation |
Plot observation weights from a robust multivariate linear models
Description
Creates an index plot of the observation weights assigned in the last
iteration of robmlm
. Observations with low weights have large
residual squared distances and are potential multivariate outliers with
respect to the fitted model.
Usage
## S3 method for class 'robmlm'
plot(
x,
labels,
id.weight = 0.7,
id.pos = 4,
pch = 19,
col = palette()[1],
cex = par("cex"),
segments = FALSE,
xlab = "Case index",
ylab = "Weight in robust MANOVA",
...
)
Arguments
x |
A |
labels |
Observation labels; if not specified, uses rownames from the original data |
id.weight |
Threshold for identifying observations with small weights |
id.pos |
Position of observation label relative to the point |
pch |
Point symbol(s); can be a vector of length equal to the number of observations in the data frame |
col |
Point color(s) |
cex |
Point character size(s) |
segments |
logical; if |
xlab |
x axis label |
ylab |
y axis label |
... |
other arguments passed to |
Value
Returns invisibly the weights for the observations labeled in the plot
Author(s)
Michael Friendly
See Also
Examples
data(Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
plot(sk.rmod, col=Skulls$epoch)
axis(side=3, at=15+seq(0,120,30), labels=levels(Skulls$epoch), cex.axis=1)
# Pottery data
data(Pottery, package = "carData")
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
plot(pottery.rmod, col=Pottery$Site, segments=TRUE)
# SocialCog data
data(SocialCog)
SC.rmod <- robmlm(cbind( MgeEmotions, ToM, ExtBias, PersBias) ~ Dx,
data=SocialCog)
plot(SC.rmod, col=SocialCog$Dx, segments=TRUE)