heplot1d {heplots} | R Documentation |
One-Dimensional HE Plots
Description
This function plots a 1-dimensional representation of the hypothesis (H) and error (E) sums-of-squares-and-products matrices for terms and linear hypotheses in a multivariate linear model.
Usage
heplot1d(mod, ...)
## S3 method for class 'mlm'
heplot1d(
mod,
terms,
hypotheses,
term.labels = TRUE,
hyp.labels = TRUE,
variables = 1,
error.ellipse = !add,
factor.means = !add,
grand.mean = !add,
remove.intercept = TRUE,
type = c("II", "III", "2", "3"),
idata = NULL,
idesign = NULL,
icontrasts = c("contr.sum", "contr.poly"),
imatrix = NULL,
iterm = NULL,
manova,
size = c("evidence", "effect.size"),
level = 0.68,
alpha = 0.05,
center.pch = "|",
col = getOption("heplot.colors", c("red", "blue", "black", "darkgreen", "darkcyan",
"magenta", "brown", "darkgray")),
lty = 2:1,
lwd = 1:2,
xlab,
main = "",
xlim,
axes = TRUE,
offset.axes = 0.1,
add = FALSE,
verbose = FALSE,
...
)
Arguments
mod |
a model object of class |
... |
arguments to pass down to |
terms |
a logical value or character vector of terms in the model for
which to plot hypothesis matrices; if missing or |
hypotheses |
optional list of linear hypotheses for which to plot
hypothesis matrices; hypotheses are specified as for the
|
term.labels |
logical value or character vector of names for the terms
to be plotted. If |
hyp.labels |
logical value or character vector of names for the
hypotheses to be plotted. If |
variables |
indices or names of the two response variables to be
plotted; defaults to |
error.ellipse |
if |
factor.means |
logical value or character vector of names of factors
for which the means are to be plotted, or |
grand.mean |
if |
remove.intercept |
if |
type |
“type” of sum-of-squares-and-products matrices to compute; one
of |
idata |
an optional data frame giving a factor or factors defining the
intra-subject model for multivariate repeated-measures data. See Details of
|
idesign |
a one-sided model formula using the “data” in idata and specifying the intra-subject design for repeated measure models. |
icontrasts |
names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is c("contr.sum", "contr.poly"). |
imatrix |
In lieu of |
iterm |
For repeated measures designs, you must specify one
intra-subject term (a character string) to select the SSPE (E) matrix used
in the HE plot. Hypothesis terms plotted include the |
manova |
optional |
size |
how to scale the hypothesis ellipse relative to the error
ellipse; if |
level |
equivalent coverage of ellipse for normally-distributed errors,
defaults to |
alpha |
significance level for Roy's greatest-root test statistic; if
|
center.pch |
character to use in plotting the centroid of the data;
defaults to |
col |
a color or vector of colors to use in plotting ellipses; the
first color is used for the error ellipse; the remaining colors — recycled
as necessary — are used for the hypothesis ellipses. A single color can
be given, in which case it is used for all ellipses. For convenience, the
default colors for all heplots produced in a given session can be changed by
assigning a color vector via |
lty |
vector of line types to use for plotting the ellipses; the first
is used for the error ellipse, the rest — possibly recycled — for the
hypothesis ellipses; a single line type can be given. Defaults to |
lwd |
vector of line widths to use for plotting the ellipses; the first
is used for the error ellipse, the rest — possibly recycled — for the
hypothesis ellipses; a single line width can be given. Defaults to |
xlab |
x-axis label; defaults to name of the x variable. |
main |
main plot label; defaults to |
xlim |
x-axis limits; if absent, will be computed from the data. |
axes |
Whether to draw the x, y axes; defaults to |
offset.axes |
proportion to extend the axes in each direction if computed from the data; optional. |
add |
if |
verbose |
if |
Details
In particular, for a given response, the 1-D representations of H and E matrices correspond to line segments. The E “ellipse” is shown as a filled rectangle whose width equals the mean squared error for that response. The H “ellipse” for each model term is shown as a line segment whose length represents either the size of the effect or the evidence for that effect.
This version is an initial sketch. Details of the implementation are subject to change.
Value
The function invisibly returns an object of class "heplot1d"
,
with coordinates for the various hypothesis ellipses and the error ellipse,
and the limits of the horizontal and vertical axes. (No methods for
manipulating these objects are currently available.)
The components are:
H |
ranges for the hypothesis terms |
E |
range for E |
xlim |
x-axis limits |
Author(s)
Michael Friendly
See Also
Anova
, linearHypothesis
for
hypothesis tests in mlm
s
heplot
, heplot3d
, pairs.mlm
for
other HE plot methods
Examples
## Plastics data
plastic.mod <- lm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
heplot1d(plastic.mod, col=c("pink","blue"))
heplot1d(plastic.mod, col=c("pink","blue"),variables=2)
heplot1d(plastic.mod, col=c("pink","blue"),variables=3)
## Bees data
bees.mod <- lm(cbind(Iz,Iy) ~ caste*treat*time, data=Bees)
heplot1d(bees.mod)
heplot1d(bees.mod, variables=2)