heplot {heplots} | R Documentation |
Two-Dimensional HE Plots
Description
This function plots ellipses representing the hypothesis and error sums-of-squares-and-products matrices for terms and linear hypotheses in a multivariate linear model. These include MANOVA models (all explanatory variables are factors), multivariate regression (all quantitative predictors), MANCOVA models, homogeneity of regression, as well as repeated measures designs treated from a multivariate perspective.
Usage
heplot(mod, ...)
## S3 method for class 'mlm'
heplot(
mod,
terms,
hypotheses,
term.labels = TRUE,
hyp.labels = TRUE,
err.label = "Error",
label.pos = NULL,
variables = 1:2,
error.ellipse = !add,
factor.means = !add,
grand.mean = !add,
remove.intercept = TRUE,
type = c("II", "III", "2", "3"),
idata = NULL,
idesign = NULL,
icontrasts = c("contr.sum", "contr.poly"),
imatrix = NULL,
iterm = NULL,
markH0 = !is.null(iterm),
manova,
size = c("evidence", "effect.size"),
level = 0.68,
alpha = 0.05,
segments = 60,
center.pch = "+",
center.cex = 2,
col = getOption("heplot.colors", c("red", "blue", "black", "darkgreen", "darkcyan",
"magenta", "brown", "darkgray")),
lty = 2:1,
lwd = 1:2,
fill = FALSE,
fill.alpha = 0.3,
xlab,
ylab,
main = "",
xlim,
ylim,
axes = TRUE,
offset.axes,
add = FALSE,
verbose = FALSE,
warn.rank = FALSE,
...
)
Arguments
mod |
a model object of class |
... |
arguments to pass down to |
terms |
a logical value or character vector of terms in the model for
which to plot hypothesis matrices; if missing or |
hypotheses |
optional list of linear hypotheses for which to plot
hypothesis matrices; hypotheses are specified as for the
|
term.labels |
logical value or character vector of names for the terms
to be plotted. If |
hyp.labels |
logical value or character vector of names for the
hypotheses to be plotted. If |
err.label |
Label for the error ellipse |
label.pos |
Label position, a vector of integers (in |
variables |
indices or names of the two response variables to be
plotted; defaults to |
error.ellipse |
if |
factor.means |
logical value or character vector of names of factors
for which the means are to be plotted, or |
grand.mean |
if |
remove.intercept |
if |
type |
“type” of sum-of-squares-and-products matrices to compute; one
of |
idata |
an optional data frame giving a factor or factors defining the
intra-subject model for multivariate repeated-measures data. See Friendly
(2010) and Details of |
idesign |
a one-sided model formula using the “data” in idata and specifying the intra-subject design for repeated measure models. |
icontrasts |
names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is c("contr.sum", "contr.poly"). |
imatrix |
In lieu of |
iterm |
For repeated measures designs, you must specify one
intra-subject term (a character string) to select the SSPE (E) matrix used
in the HE plot. Hypothesis terms plotted include the |
markH0 |
A logical value (or else a list of arguments to
|
manova |
optional |
size |
how to scale the hypothesis ellipse relative to the error
ellipse; if |
level |
equivalent coverage of ellipse for normally-distributed errors,
defaults to |
alpha |
significance level for Roy's greatest-root test statistic; if
|
segments |
number of line segments composing each ellipse; defaults to |
center.pch |
character to use in plotting the centroid of the data;
defaults to |
center.cex |
size of character to use in plotting the centroid of the data; defaults to |
col |
a color or vector of colors to use in plotting ellipses; the
first color is used for the error ellipse; the remaining colors — recycled
as necessary — are used for the hypothesis ellipses. A single color can
be given, in which case it is used for all ellipses. For convenience, the
default colors for all heplots produced in a given session can be changed by
assigning a color vector via |
lty |
vector of line types to use for plotting the ellipses; the first
is used for the error ellipse, the rest — possibly recycled — for the
hypothesis ellipses; a single line type can be given. Defaults to |
lwd |
vector of line widths to use for plotting the ellipses; the first
is used for the error ellipse, the rest — possibly recycled — for the
hypothesis ellipses; a single line width can be given. Defaults to
|
fill |
A logical vector indicating whether each ellipse should be filled or not. The first value is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single fill value can be given. Defaults to FALSE for backward compatibility. See Details below. |
fill.alpha |
Alpha transparency for filled ellipses, a numeric scalar
or vector of values within |
xlab |
x-axis label; defaults to name of the x variable. |
ylab |
y-axis label; defaults to name of the y variable. |
main |
main plot label; defaults to |
xlim |
x-axis limits; if absent, will be computed from the data. |
ylim |
y-axis limits; if absent, will be computed from the data. |
axes |
Whether to draw the x, y axes; defaults to |
offset.axes |
proportion to extend the axes in each direction if computed from the data; optional. |
add |
if |
verbose |
if |
warn.rank |
if |
Details
The heplot
function plots a representation of the covariance ellipses
for hypothesized model terms and linear hypotheses (H) and the corresponding
error (E) matrices for two response variables in a multivariate linear model
(mlm).
The plot helps to visualize the nature and dimensionality response variation
on the two variables jointly in relation to error variation that is
summarized in the various multivariate test statistics (Wilks' Lambda,
Pillai trace, Hotelling-Lawley trace, Roy maximum root). Roy's maximum root
test has a particularly simple visual interpretation, exploited in the
size="evidence"
version of the plot. See the description of argument
alpha
.
For a 1 df hypothesis term (a quantitative regressor, a single contrast or
parameter test), the H matrix has rank 1 (one non-zero latent root of H
E^{-1}
) and the H "ellipse" collapses to a degenerate line.
Typically, you fit a mlm with mymlm <- lm(cbind(y1, y2, y3, ...) ~
modelterms)
, and plot some or all of the modelterms
with
heplot(mymlm, ...)
. Arbitrary linear hypotheses related to the terms
in the model (e.g., contrasts of an effect) can be included in the plot
using the hypotheses
argument. See
linearHypothesis
for details.
For repeated measure designs, where the response variables correspond to one
or more variates observed under a within-subject design, between-subject
effects and within-subject effects must be plotted separately, because the
error terms (E matrices) differ. When you specify an intra-subject term
(iterm
), the analysis and HE plots amount to analysis of the matrix
Y of responses post-multiplied by a matrix M determined by the
intra-subject design for that term. See Friendly (2010) or the
vignette("repeated")
in this package for an extended discussion and
examples.
The related candisc
package provides functions for
visualizing a multivariate linear model in a low-dimensional view via a
generalized canonical discriminant analyses.
heplot.candisc
and
heplot3d.candisc
provide a low-rank 2D (or 3D) view
of the effects for a given term in the space of maximum discrimination.
When an element of fill
is TRUE
, the ellipse outline is drawn
using the corresponding color in col
, and the interior is filled with
a transparent version of this color specified in fill.alpha
. To
produce filled (non-degenerate) ellipses without the bounding outline, use a
value of lty=0
in the corresponding position.
Value
The function invisibly returns an object of class "heplot"
,
with coordinates for the various hypothesis ellipses and the error ellipse,
and the limits of the horizontal and vertical axes. These may be useful for
adding additional annotations to the plot, using standard plotting
functions. (No methods for manipulating these objects are currently
available.)
The components are:
- H
a list containing the coordinates of each ellipse for the hypothesis terms
- E
a matrix containing the coordinates for the error ellipse
- center
x,y coordinates of the centroid
- xlim
x-axis limits
- ylim
y-axis limits
- radius
the radius for the unit circles used to generate the ellipses
References
Friendly, M. (2006). Data Ellipses, HE Plots and Reduced-Rank Displays for Multivariate Linear Models: SAS Software and Examples Journal of Statistical Software, 17(6), 1–42. https://www.jstatsoft.org/v17/i06/, DOI: 10.18637/jss.v017.i06
Friendly, M. (2007). HE plots for Multivariate General Linear Models. Journal of Computational and Graphical Statistics, 16(2) 421–444. http://datavis.ca/papers/jcgs-heplots.pdf
Friendly, Michael (2010). HE Plots for Repeated Measures Designs. Journal of Statistical Software, 37(4), 1-40. DOI: 10.18637/jss.v037.i04.
Fox, J., Friendly, M. & Weisberg, S. (2013). Hypothesis Tests for Multivariate Linear Models Using the car Package. The R Journal, 5(1), https://journal.r-project.org/archive/2013-1/fox-friendly-weisberg.pdf.
Friendly, M. & Sigal, M. (2014) Recent Advances in Visualizing Multivariate Linear Models. Revista Colombiana de Estadistica, 37, 261-283.
See Also
Anova
, linearHypothesis
for
details on testing MLMs.
heplot1d
, heplot3d
, pairs.mlm
,
mark.H0
for other HE plot functions.
coefplot.mlm
for plotting confidence ellipses for parameters
in MLMs.
trans.colors
for calculation of transparent colors.
label.ellipse
for labeling positions in plotting H and E
ellipses.
candisc
, heplot.candisc
for
reduced-rank views of mlm
s in canonical space.
Examples
## iris data
contrasts(iris$Species) <- matrix(c(0,-1,1, 2, -1, -1), 3,2)
contrasts(iris$Species)
iris.mod <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~
Species, data=iris)
hyp <- list("V:V"="Species1","S:VV"="Species2")
heplot(iris.mod, hypotheses=hyp)
# compare with effect-size scaling
heplot(iris.mod, hypotheses=hyp, size="effect", add=TRUE)
# try filled ellipses; include contrasts
heplot(iris.mod, hypotheses=hyp, fill=TRUE,
fill.alpha=0.2, col=c("red", "blue"))
heplot(iris.mod, hypotheses=hyp, fill=TRUE,
col=c("red", "blue"), lty=c(0,0,1,1))
# vary label position and fill.alpha
heplot(iris.mod, hypotheses=hyp, fill=TRUE, fill.alpha=c(0.3,0.1), col=c("red", "blue"),
lty=c(0,0,1,1), label.pos=0:3)
# what is returned?
hep <-heplot(iris.mod, variables=c(1,3), hypotheses=hyp)
str(hep)
# all pairs
pairs(iris.mod, hypotheses=hyp, hyp.labels=FALSE)
## Pottery data, from car package
data(Pottery, package = "carData")
pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)
heplot(pottery.mod)
heplot(pottery.mod, terms=FALSE, add=TRUE, col="blue",
hypotheses=list(c("SiteCaldicot = 0", "SiteIsleThorns=0")),
hyp.labels="Sites Caldicot and Isle Thorns")
## Rohwer data, multivariate multiple regression/ANCOVA
#-- ANCOVA, assuming equal slopes
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss, data=Rohwer)
car::Anova(rohwer.mod)
col <- c("red", "black", "blue", "cyan", "magenta", "brown", "gray")
heplot(rohwer.mod, col=col)
# Add ellipse to test all 5 regressors
heplot(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")),
col=col, fill=TRUE)
# View all pairs
pairs(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))
# or 3D plot
if(requireNamespace("rgl")){
col <- c("pink", "black", "blue", "cyan", "magenta", "brown", "gray")
heplot3d(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")), col=col)
}