Sake {heplots} | R Documentation |
Taste Ratings of Japanese Rice Wine (Sake)
Description
Siotani et al. (1985) describe a study of Japanese rice wine (sake) used to
investigate the relationship between two subjective ratings (taste
and smell
) and a number of physical measurements on 30 brands of
sake.
Format
A data frame with 30 observations on the following 10 variables.
taste
mean taste rating
smell
mean smell rating
pH
pH measurement
acidity1
one measure of acidity
acidity2
another measure of acidity
sake
Sake-meter score
rsugar
direct reducing sugar content
tsugar
total sugar content
alcohol
alcohol content
nitrogen
formol-nitrogen content
Details
These data provide one example of a case where a multivariate regression doesn't benefit from having multiple outcome measures, using the standard tests. Barrett (2003) uses this data to illustrate influence measures for multivariate regression models.
The taste
and smell
values are the mean ratings of 10 experts
on some unknown scale.
Source
Siotani, M. Hayakawa, T. & Fujikoshi, Y. (1985). Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. American Sciences Press, p. 217.
References
Barrett, B. E. (2003). Understanding Influence in Multivariate Regression. Communications in Statistics - Theory and Methods 32 (3), 667-680.
Examples
data(Sake)
# quick look at the data
boxplot(scale(Sake))
Sake.mod <- lm(cbind(taste,smell) ~ ., data=Sake)
library(car)
car::Anova(Sake.mod)
predictors <- colnames(Sake)[-(1:2)]
# overall multivariate regression test
linearHypothesis(Sake.mod, predictors)
heplot(Sake.mod, hypotheses=list("Regr" = predictors))