dfr_page_hinkley {heimdall} | R Documentation |
Adapted Page Hinkley method
Description
Change-point detection method works by computing the observed values and their mean up to the current moment doi:10.2307/2333009.
Usage
dfr_page_hinkley(
target_feat,
min_instances = 30,
delta = 0.005,
threshold = 50,
alpha = 1 - 1e-04
)
Arguments
target_feat |
Feature to be monitored. |
min_instances |
The minimum number of instances before detecting change |
delta |
The delta factor for the Page Hinkley test |
threshold |
The change detection threshold (lambda) |
alpha |
The forgetting factor, used to weight the observed value and the mean |
Value
dfr_page_hinkley
object
Examples
library(daltoolbox)
library(heimdall)
# This example assumes a model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_page_hinkley(target_feat='serie')
detection <- c()
output <- list(obj=model, drift=FALSE)
for (i in 1:length(data$serie)){
output <- update_state(output$obj, data$serie[i])
if (output$drift){
type <- 'drift'
output$obj <- reset_state(output$obj)
}else{
type <- ''
}
detection <- rbind(detection, list(idx=i, event=output$drift, type=type))
}
detection <- as.data.frame(detection)
detection[detection$type == 'drift',]
[Package heimdall version 1.0.717 Index]