dfr_mcdd {heimdall} | R Documentation |
Mean Comparison Distance method
Description
Mean Comparison statistical method for concept drift detection.
Usage
dfr_mcdd(target_feat, alpha = 0.05, window_size = 100)
Arguments
target_feat |
Feature to be monitored |
alpha |
Probability theshold for all test statistics |
window_size |
Size of the sliding window |
Value
dfr_mcdd
object
Examples
library(daltoolbox)
library(heimdall)
# This example uses a dist-based drift detector with a synthetic dataset.
data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
model <- dfr_mcdd(target_feat='depart_visibility')
detection <- NULL
output <- list(obj=model, drift=FALSE)
for (i in 1:length(data$serie)){
output <- update_state(output$obj, data$serie[i])
if (output$drift){
type <- 'drift'
output$obj <- reset_state(output$obj)
}else{
type <- ''
}
detection <- rbind(detection, data.frame(idx=i, event=output$drift, type=type))
}
detection[detection$type == 'drift',]
[Package heimdall version 1.0.717 Index]