dfr_hddm {heimdall} | R Documentation |
Adapted Hoeffding Drift Detection Method (HDDM) method
Description
is a drift detection method based on the Hoeffding’s inequality. HDDM_A uses the average as estimator. doi:10.1109/TKDE.2014.2345382.
Usage
dfr_hddm(
drift_confidence = 0.001,
warning_confidence = 0.005,
two_side_option = TRUE
)
Arguments
drift_confidence |
Confidence to the drift |
warning_confidence |
Confidence to the warning |
two_side_option |
Option to monitor error increments and decrements (two-sided) or only increments (one-sided) |
Value
dfr_hddm
object
Examples
library(daltoolbox)
library(heimdall)
# This example uses an error-based drift detector with a synthetic a
# model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_hddm()
detection <- NULL
output <- list(obj=model, drift=FALSE)
for (i in 1:length(data$prediction)){
output <- update_state(output$obj, data$prediction[i])
if (output$drift){
type <- 'drift'
output$obj <- reset_state(output$obj)
}else{
type <- ''
}
detection <- rbind(detection, data.frame(idx=i, event=output$drift, type=type))
}
detection[detection$type == 'drift',]
[Package heimdall version 1.0.717 Index]