dfr_eddm {heimdall} | R Documentation |
Adapted Early Drift Detection Method (EDDM) method
Description
EDDM (Early Drift Detection Method) aims to improve the detection rate of gradual concept drift in DDM, while keeping a good performance against abrupt concept drift. doi:2747577a61c70bc3874380130615e15aff76339e
Usage
dfr_eddm(
min_instances = 30,
min_num_errors = 30,
warning_level = 0.95,
out_control_level = 0.9
)
Arguments
min_instances |
The minimum number of instances before detecting change |
min_num_errors |
The minimum number of errors before detecting change |
warning_level |
Necessary level for warning zone |
out_control_level |
Necessary level for a positive drift detection |
Value
dfr_eddm
object
Examples
library(daltoolbox)
library(heimdall)
# This example uses an error-based drift detector with a synthetic a
# model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_eddm()
detection <- NULL
output <- list(obj=model, drift=FALSE)
for (i in 1:length(data$prediction)){
output <- update_state(output$obj, data$prediction[i])
if (output$drift){
type <- 'drift'
output$obj <- reset_state(output$obj)
}else{
type <- ''
}
detection <- rbind(detection, data.frame(idx=i, event=output$drift, type=type))
}
detection[detection$type == 'drift',]
[Package heimdall version 1.0.717 Index]