dfr_ddm {heimdall} | R Documentation |
Adapted Drift Detection Method (DDM) method
Description
DDM is a concept change detection method based on the PAC learning model premise, that the learner’s error rate will decrease as the number of analysed samples increase, as long as the data distribution is stationary. doi:10.1007/978-3-540-28645-5_29.
Usage
dfr_ddm(min_instances = 30, warning_level = 2, out_control_level = 3)
Arguments
min_instances |
The minimum number of instances before detecting change |
warning_level |
Necessary level for warning zone (2 standard deviation) |
out_control_level |
Necessary level for a positive drift detection |
Value
dfr_ddm
object
Examples
library(daltoolbox)
library(heimdall)
# This example uses an error-based drift detector with a synthetic a
# model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_ddm()
detection <- NULL
output <- list(obj=model, drift=FALSE)
for (i in 1:length(data$prediction)){
output <- update_state(output$obj, data$prediction[i])
if (output$drift){
type <- 'drift'
output$obj <- reset_state(output$obj)
}else{
type <- ''
}
detection <- rbind(detection, data.frame(idx=i, event=output$drift, type=type))
}
detection[detection$type == 'drift',]
[Package heimdall version 1.0.717 Index]