CV_VARMLE {hdiVAR} | R Documentation |
cross-validation for transition matrix update in maximization step
Description
Tune the tolerance parameter of generalized Dantzig selector and hard thresholding level via prediction error in test data.
Usage
CV_VARMLE(tol_seq, ht_seq, S0_train, S1_train, Y_test, is_echo = FALSE)
Arguments
tol_seq |
vector; grid of tolerance parameter in Dantzig selector for cross-validation. |
ht_seq |
vector; grid of hard-thresholding levels for transition matrix estimate.
To avoid hard thresholding, set |
S0_train |
a p by p matrix; average (over time points in training data) of conditional expectation of |
S1_train |
a p by p matrix; average (over time points in training data) of conditional expectation of |
Y_test |
a p by T_test matrix; observations of time series in test set. |
is_echo |
logical; if true, display the information of CV-optimal (tol, ht). |
Value
a list of CV-optimal parameters and test prediction error.
tol_min | CV-optimal tolerance parameter in Dantzig selector. |
ht_min | CV-optimal hard thresholding level for the output of Dantzig selector. |
test_loss | a matrix of prediction error in test data; columns match tol_seq , and rows match ht_seq . |
Author(s)
Xiang Lyu, Jian Kang, Lexin Li