HDCATE.plot {hdcate} | R Documentation |
Plot HDCATE function and the uniform confidence bands
Description
Plot HDCATE function and the uniform confidence bands
Usage
HDCATE.plot(
HDCATE_model,
output_pdf = FALSE,
pdf_name = "hdcate_plot.pdf",
include_band = TRUE,
test_side = "both",
y_axis_min = "auto",
y_axis_max = "auto",
display.hdcate = "HDCATEF",
display.ate = "ATE",
display.siglevel = "sig_level"
)
Arguments
HDCATE_model |
an object created via HDCATE |
output_pdf |
if |
pdf_name |
file name when |
include_band |
if |
test_side |
|
y_axis_min |
minimum value of the Y axis to plot in the graph, the default is |
y_axis_max |
maximum value of the Y axis to plot in the graph, the default is |
display.hdcate |
the name of HDCATE function in the legend, the default is 'HDCATEF' |
display.ate |
the name of average treatment effect in the legend, the default is 'ATE' |
display.siglevel |
the name of the significant level for confidence bands in the legend, the default is 'sig_level' |
Value
None. A plot will be shown or saved as PDF.
Examples
# get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
# conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse ='+')
# propensity score model is misspecified
# x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse ='+')
# create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)
HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
HDCATE.fit(model)
HDCATE.inference(model)
HDCATE.plot(model)
[Package hdcate version 0.1.0 Index]