HDCATE {hdcate} | R Documentation |
High-Dimensional Conditional Average Treatment Effects (HDCATE) Estimator
Description
Use a two-step procedure to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s).
Run browseVignettes('hdcate')
to browse the user manual of this package.
Usage
HDCATE(data, y_name, d_name, x_formula)
Arguments
data |
data frame of the observed data |
y_name |
variable name of the observed outcomes |
d_name |
variable name of the treatment indicators |
x_formula |
formula of the covariates |
Value
An initialized HDCATE
model (object), ready for estimation.
Examples
# get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
# conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse ='+')
# for example, and alternatively, the propensity score model is misspecified
# x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse ='+')
# Example 1: full-sample estimator
# create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)
# estimate HDCATE function, inference, and plot
HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
HDCATE.fit(model)
HDCATE.inference(model)
HDCATE.plot(model)
# Example 2: cross-fitting estimator
# change above estimator to cross-fitting mode, 5 folds, for example.
HDCATE.use_cross_fitting(model, k_fold=5)
# estimate HDCATE function, inference, and plot
HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
HDCATE.fit(model)
HDCATE.inference(model)
HDCATE.plot(model)
[Package hdcate version 0.1.0 Index]