summary.hdbma {hdbma} | R Documentation |
Summary for hdbma results
Description
This function summarize the results from hdbma objects with estimations, standard errors, and confidence intervals.
Usage
## S3 method for class 'hdbma'
summary(object, ..., plot = TRUE, RE = TRUE,
quant = c(0.025, 0.25, 0.5, 0.75, 0.975), digit = 4, method = 1)
Arguments
object |
the hdbma object from the hdbma function. |
... |
further arguments passed to or from other methods. |
plot |
if true, plot the estimation summaries. Default is True. |
RE |
if true, present results for relative effects. Default is True. |
quant |
the set of quantiles to be shown in the sumamry results. Default is c(0.025, 0.25, 0.5, 0.75, 0.975). |
digit |
the number of digit to be shown. |
method |
the method to be shown. See the reference. |
Value
result1 , ... , result4 |
the inference results for estimated mediation effects from methods 1 to 4. |
result1.re , ... , result4.re |
the inference results for estimated relative effects from methods 1 to 4. |
Author(s)
Qingzhao Yu and Bin Li
References
Yu, Q., Hagan, J., Wu, X., Richmond-Bryant, J., and Li, B., 2023, High-Dimensional Bayesian Mediation Analysis with Adaptive Laplace Priors. Submitted.
Examples
data("weight_behavior")
#for all the examples, needs to remove or increase n.iter and n.burnin
#binary predictor
test.b.c<- hdbma(pred=weight_behavior[,3], m=weight_behavior[,c(4,14,12,13)],
y=weight_behavior[,1],n.iter=10,n.burnin = 1)
summary(test.b.c)
##use covariate for y
test.b.c.2<- hdbma(pred=weight_behavior[,3], m=weight_behavior[,12:14],
y=weight_behavior[,1],cova=weight_behavior[,2],n.iter=10,n.burnin = 1)
summary(test.b.c.2)
#categorical predictor
test.ca.c<- hdbma(pred=weight_behavior[,4], m=weight_behavior[,12:14],
y=weight_behavior[,1],n.iter=10,n.burnin = 1)
summary(test.ca.c)
#use covariate for mediators
test.b.c.3<- hdbma(pred=weight_behavior[,3], m=weight_behavior[,c(9,12:14)],
y=weight_behavior[,1],mcov=weight_behavior[,c(2,5)],
mclist = list(1,2),n.iter=10,n.burnin = 1)
summary(test.b.c.3)
#use continuous predictor
test.c.c<- hdbma(pred=weight_behavior[,2], m=weight_behavior[,12:14],
y=weight_behavior[,1],n.iter=10,n.burnin = 1)
summary(test.c.c,method=3)
#use transfered continuous predictor
test.c.c.2<- hdbma(pred=weight_behavior[,2], m=weight_behavior[,12:14],
y=weight_behavior[,1],fpy=list(1,c("x","x^2")),
n.iter=10,n.burnin = 1)
summary(test.c.c.2,method=1)
#multiple predictors
test.m.c<- hdbma(pred=weight_behavior[,2:4], m=weight_behavior[,12:14],
y=weight_behavior[,1],n.iter=10,n.burnin = 1)
summary(test.m.c,RE=FALSE)
##binary outcome
test.m.b<- hdbma(pred=weight_behavior[,2:4], m=weight_behavior[,12:14],
y=weight_behavior[,15],cova=weight_behavior[,5],
n.iter=10,n.burnin = 1)
summary(test.m.b,method=2)
##categorical outcome
weight_behavior[,14]=as.factor(weight_behavior[,14])
test.m.c<- hdbma(pred=weight_behavior[,2:4], m=weight_behavior[,12:13],
y=weight_behavior[,14],cova=weight_behavior[,5],
n.iter=10,n.burnin = 1)
summary(test.m.c,method=2)
summary(test.m.c,method=1)
##time-to-event outcome
##Surv class outcome (survival analysis)
#use a simulation
set.seed(1)
N=100
alpha=0.5
x=rnorm(N,0,1)
x=ifelse(x>0,1,0)
e1=rnorm(N,0,1)
M=alpha*x+e1
lambda=0.01
rho=1
beta=1.2
c=-1
rateC=0.001
v=runif(n=N)
Tlat =(- log(v) / (lambda * exp(c*x+M*beta)))^(1 / rho)
C=rexp(n=N, rate=rateC)
time=pmin(Tlat, C)
status <- as.numeric(Tlat <= C)
test.m.t.1<- hdbma(pred=x, m=M,y=Surv(time,status),inits=function(){
list(r=1,lambda=0.01)
},n.iter=10,n.burnin = 1)
summary(test.m.t.1,RE=FALSE)