run_joint_hmm_s15 {hahmmr} | R Documentation |
Run 15-state joint HMM on a pseudobulk profile
Description
Run 15-state joint HMM on a pseudobulk profile
Usage
run_joint_hmm_s15(
pAD,
DP,
p_s,
Y_obs = 0,
lambda_ref = 0,
d_total = 0,
theta_min = 0.08,
theta_neu = 0,
bal_cnv = TRUE,
phi_del = 2^(-0.25),
phi_amp = 2^(0.25),
phi_bamp = phi_amp,
phi_bdel = phi_del,
mu = 0,
sig = 1,
r = 0.015,
t = 1e-05,
gamma = 18,
prior = NULL,
exp_only = FALSE,
allele_only = FALSE,
classify_allele = FALSE,
debug = FALSE,
...
)
Arguments
pAD |
integer vector Paternal allele counts |
DP |
integer vector Total alelle counts |
p_s |
numeric vector Phase switch probabilities |
Y_obs |
numeric vector Observed gene counts |
lambda_ref |
numeric vector Reference expression rates |
d_total |
integer Total library size for expression counts |
theta_min |
numeric Minimum haplotype imbalance threshold |
theta_neu |
numeric Haplotype imbalance threshold for neutral state |
bal_cnv |
logical Whether to include balanced CNV states |
phi_del |
numeric Expected fold change for deletion |
phi_amp |
numeric Expected fold change for amplification |
phi_bamp |
numeric Expected fold change for balanced amplification |
phi_bdel |
numeric Expected fold change for balanced deletion |
mu |
numeric Global expression bias |
sig |
numeric Global expression variance |
r |
numeric Variant mapping bias |
t |
numeric Transition probability between copy number states |
gamma |
numeric Overdispersion in the allele-specific expression |
prior |
numeric vector Prior probabilities for each state |
exp_only |
logical Whether to only use expression data |
allele_only |
logical Whether to only use allele data |
classify_allele |
logical Whether to classify allele states |
debug |
logical Whether to print debug messages |
... |
Additional parameters |
Value
character vector Decoded states
Examples
with(bulk_example, {
run_joint_hmm_s15(pAD = pAD, DP = DP, p_s = p_s, Y_obs = Y_obs, lambda_ref = lambda_ref,
d_total = na.omit(unique(d_obs)), mu = mu, sig = sig, t = 1e-5, gamma = 30, theta_min = 0.08)
})