logit {hSDM} | R Documentation |
Generalized logit and inverse logit function
Description
Compute generalized logit and generalized inverse logit functions.
Usage
logit(x, min = 0, max = 1)
inv.logit(x, min = 0, max = 1)
Arguments
x |
value(s) to be transformed |
min |
Lower end of logit interval |
max |
Upper end of logit interval |
Details
The generalized logit function takes values on [min, max] and transforms them to span [-Inf,Inf] it is defined as:
y = log(\frac{p}{(1-p)})
where
p=\frac{(x-min)}{(max-min)}
The generized inverse logit function provides the inverse transformation:
x = p' (max-min) + min
where
p'=\frac{exp(y)}{(1+exp(y))}
Value
Transformed value(s).
Author(s)
Gregory R. Warnes <greg@warnes.net>
Examples
## Not run:
x <- seq(0,10, by=0.25)
xt <- logit(x, min=0, max=10)
cbind(x,xt)
y <- inv.logit(xt, min=0, max=10)
cbind(x,xt,y)
## End(Not run)
[Package hSDM version 1.4.4 Index]