hSDM.ZIP.iCAR {hSDM} | R Documentation |
ZIP (Zero-Inflated Poisson) model with CAR process
Description
The hSDM.ZIP.iCAR
function can be used to model
species distribution including different processes in a hierarchical
Bayesian framework: a \mathcal{B}ernoulli
suitability
process (refering to various ecological variables explaining
environmental suitability or not) which takes into account the spatial
dependence of the observations, and a \mathcal{P}oisson
abundance process (refering to various ecological variables explaining
the species abundance when the habitat is suitable). The
hSDM.ZIP.iCAR
function calls a Gibbs sampler written in C code
which uses an adaptive Metropolis algorithm to estimate the
conditional posterior distribution of hierarchical model's
parameters.
Usage
hSDM.ZIP.iCAR(counts, suitability, abundance, spatial.entity,
data, n.neighbors, neighbors, suitability.pred=NULL,
spatial.entity.pred=NULL, burnin = 5000, mcmc = 10000, thin = 10,
beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta = 1e+06, mugamma
= 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape = 0.5, rate = 0.0005,
Vrho.max=1000, seed = 1234, verbose = 1, save.rho = 0, save.p = 0)
Arguments
counts |
A vector indicating the count for each observation. |
suitability |
A one-sided formula of the form
|
abundance |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
Details
The model integrates two processes, an ecological process associated to habitat suitability (habitat is suitable or not for the species) and an abundance process that takes into account ecological variables explaining the species abundance when the habitat is suitable. The suitability process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the suitability at one site depends on the suitability on neighboring sites.
Suitability process:
z_i \sim \mathcal{B}ernoulli(\theta_i)
logit(\theta_i) = X_i \beta + \rho_{j(i)}
\rho_j
: spatial random effect
j(i)
: index of the spatial entity for observation i
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
\rho_j \sim \mathcal{N}ormal(\mu_j,V_{\rho} / n_j)
\mu_j
: mean of \rho_{j'}
in the
neighborhood of j
.
V_{\rho}
: variance of the spatial random effects.
n_j
: number of neighbors for spatial entity j
.
Abundance process:
y_i \sim \mathcal{P}oisson(z_i * \lambda_i)
log(\lambda_i) = W_i \gamma
Value
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Author(s)
Ghislain Vieilledent ghislain.vieilledent@cirad.fr
References
Flores, O.; Rossi, V. and Mortier, F. (2009) Autocorrelation offsets zero-inflation in models of tropical saplings density. Ecological Modelling, 220, 1797-1809.
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
See Also
Examples
## Not run:
#==============================================
# hSDM.ZIP.iCAR()
# Example with simulated data
#==============================================
#============
#== Preambule
library(hSDM)
library(raster)
library(sp)
library(mvtnorm)
#==================
#== Data simulation
# Set seed for repeatability
seed <- 1234
# Target parameters
beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)
gamma.target <- matrix(c(1),ncol=1)
## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)
Vrho.target <- 1 # Spatial Variance
# Landscape
Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1')
ncell <- ncell(Landscape)
# Neighbors
neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2]
adj <- neighbors.mat[,2]
# Generate symmetric adjacency matrix, A
A <- matrix(0,ncell,ncell)
index.start <- 1
for (i in 1:ncell) {
index.end <- index.start+n.neighbors[i]-1
A[i,adj[c(index.start:index.end)]] <- 1
index.start <- index.end+1
}
# Spatial effects
d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR
Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular
covrho <- Vrho.target*solve(Q) # Covariance of rhos
set.seed(seed)
rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects
rho <- rho-mean(rho) # Centering rhos on zero
# Visited cells
n.visited <- 150 # Compare with 400, 350 and 100 for example
set.seed(seed)
visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random
notvisited.cells <- c(1:ncell)[-visited.cells]
# Number of observations
nobs <- 300
# Cell vector
set.seed(seed)
cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE))
coords <- xyFromCell(Landscape,cells) # Get coordinates
# Covariates for "suitability" process
set.seed(seed)
X1.cell <- rnorm(n=ncell,0,1)
set.seed(2*seed)
X2.cell <- rnorm(n=ncell,0,1)
X1 <- X1.cell[cells]
X2 <- X2.cell[cells]
X <- cbind(rep(1,nobs),X1,X2)
# Covariates for "abundance" process
W <- cbind(rep(1,nobs))
## Uncomment if you want covariates on the observability process
## set.seed(3*seed)
## W1 <- rnorm(n=nobs,0,1)
## set.seed(4*seed)
## W2 <- rnorm(n=nobs,0,1)
## W <- cbind(rep(1,nobs),W1,W2)
#== Simulating latent variables
# Suitability
logit.theta <- vector()
for (n in 1:nobs) {
logit.theta[n] <- X[n,]%*%beta.target+rho[cells[n]]
}
theta <- inv.logit(logit.theta)
set.seed(seed)
y.1 <- rbinom(nobs,1,theta)
# Abundance
set.seed(seed)
log.lambda <- W %*% gamma.target
lambda <- exp(log.lambda)
set.seed(seed)
y.2 <- rpois(nobs,lambda)
#== Simulating response variable
Y <- y.2*y.1
#== Data-set
Data <- data.frame(Y,cells,X1,X2)
## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,cells,X1,X2,W1,W2)
Data <- SpatialPointsDataFrame(coords=coords,data=Data)
plot(Data)
#== Data-set for predictions (suitability on each spatial cell)
Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell))
#==================================
#== ZIP model with CAR
mod.hSDM.ZIP.iCAR <- hSDM.ZIP.iCAR(counts=Data$Y,
suitability=~X1+X2,
abundance=~1,
spatial.entity=Data$cells,
data=Data,
n.neighbors=n.neighbors,
neighbors=adj,
suitability.pred=Data.pred,
spatial.entity.pred=Data.pred$cells,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,
gamma.start=0,
Vrho.start=10,
priorVrho="1/Gamma",
#priorVrho="Uniform",
#priorVrho=10,
mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0E6,
shape=0.5, rate=0.0005,
#Vrho.max=1000,
seed=1234, verbose=1,
save.rho=1, save.p=0)
#==========
#== Outputs
#= Parameter estimates
summary(mod.hSDM.ZIP.iCAR$mcmc)
#= MCMC and posteriors
pdf(file="Posteriors_hSDM.ZIP.iCAR.pdf")
plot(mod.hSDM.ZIP.iCAR$mcmc)
dev.off()
pdf(file="Posteriors.rho_hSDM.ZIP.iCAR.pdf")
plot(mod.hSDM.ZIP.iCAR$rho.pred)
dev.off()
#= Summary plots
# rho
r.rho <- r.rho.pred <- r.visited <- Landscape
r.rho[] <- rho
rho.pred <- apply(mod.hSDM.ZIP.iCAR$rho.pred,2,mean)
r.rho.pred[] <- rho.pred
r.visited[] <- 0
r.visited[visited.cells] <- tapply(Data$Y,Data$cells,mean)
# prob.p
r.prob.p <- Landscape
r.prob.p[] <- mod.hSDM.ZIP.iCAR$prob.p.pred
pdf(file="Summary_hSDM.ZIP.iCAR.pdf")
par(mfrow=c(3,2))
plot(r.rho, main="rho target")
plot(r.visited,main="Visited cells and counts")
plot(Data,add=TRUE,pch=16,cex=0.5)
plot(r.rho.pred, main="rho estimated")
plot(rho[visited.cells],rho.pred[visited.cells],
xlab="rho target",
ylab="rho estimated")
points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue")
legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n")
abline(a=0,b=1,col="red")
plot(r.prob.p,main="Predicted counts")
plot(Data,add=TRUE,pch=16,cex=0.5)
dev.off()
## End(Not run)