hSDM.ZIB.iCAR {hSDM} | R Documentation |
ZIB (Zero-Inflated Binomial) model with CAR process
Description
The hSDM.ZIB.iCAR
function can be used to
model species distribution including different processes in a
hierarchical Bayesian framework: a
\mathcal{B}ernoulli
suitability process (refering to
environmental suitability) which takes into account the spatial
dependence of the observations, and a
\mathcal{B}inomial
observability process (refering to
various ecological and methodological issues explaining the species
detection). The hSDM.ZIB.iCAR
function calls a Gibbs
sampler written in C code which uses an adaptive Metropolis algorithm
to estimate the conditional posterior distribution of hierarchical
model's parameters.
Usage
hSDM.ZIB.iCAR(presences, trials, suitability,
observability, spatial.entity, data, n.neighbors, neighbors,
suitability.pred=NULL, spatial.entity.pred=NULL, burnin = 5000, mcmc =
10000, thin = 10, beta.start, gamma.start, Vrho.start, mubeta = 0, Vbeta
= 1e+06, mugamma = 0, Vgamma = 1e+06, priorVrho = "1/Gamma", shape =
0.5, rate = 0.0005, Vrho.max=1000, seed = 1234, verbose = 1, save.rho =
0, save.p = 0)
Arguments
presences |
A vector indicating the number of successes (or presences) for each observation. |
trials |
A vector indicating the number of trials for each
observation. |
suitability |
A one-sided formula of the form
|
observability |
A one-sided formula of the form
|
spatial.entity |
A vector indicating the spatial entity identifier (from one to the total number of entities) for each observation. Several observations can occur in one spatial entity. A spatial entity can be a raster cell for example. |
data |
A data frame containing the model's variables. |
n.neighbors |
A vector of integers that indicates the number of
neighbors (adjacent entities) of each spatial
entity. |
neighbors |
A vector of integers indicating the neighbors
(adjacent entities) of each spatial entity. Must be of the form
c(neighbors of entity 1, neighbors of entity 2, ... , neighbors of
the last entity). Length of the |
suitability.pred |
An optional data frame in which to look for variables with which to predict. If NULL, the observations are used. |
spatial.entity.pred |
An optional vector indicating the spatial
entity identifier (from one to the total number of entities) for
predictions. If NULL, the vector |
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total
number of Gibbs iterations is equal to
|
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
beta.start |
Starting values for |
gamma.start |
Starting values for |
Vrho.start |
Positive scalar indicating the starting value for the variance of the spatial random effects. |
mubeta |
Means of the priors for the |
Vbeta |
Variances of the Normal priors for the |
mugamma |
Means of the Normal priors for the |
Vgamma |
Variances of the Normal priors for the
|
priorVrho |
Type of prior for the variance of the spatial random
effects. Can be set to a fixed positive scalar, or to an inverse-gamma
distribution ("1/Gamma") with parameters |
shape |
The shape parameter for the Gamma prior on the precision
of the spatial random effects. Default value is |
rate |
The rate (1/scale) parameter for the Gamma prior on the
precision of the spatial random effects. Default value is
|
Vrho.max |
Upper bound for the uniform prior of the spatial random effect variance. Default set to 1000. |
seed |
The seed for the random number generator. Default set to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
save.rho |
A switch (0,1) which determines whether or not the
sampled values for rhos are saved. Default is 0: the posterior mean
is computed and returned in the |
save.p |
A switch (0,1) which determines whether or not the
sampled values for predictions are saved. Default is 0: the
posterior mean is computed and returned in the |
Details
The model integrates two processes, an ecological process associated to the presence or absence of the species due to habitat suitability and an observation process that takes into account the fact that the probability of detection of the species is inferior to one. The ecological process includes an intrinsic conditional autoregressive model (iCAR) model for spatial autocorrelation between observations, assuming that the probability of presence of the species at one site depends on the probability of presence of the species on neighboring sites.
Ecological process:
z_i \sim \mathcal{B}ernoulli(\theta_i)
logit(\theta_i) = X_i \beta + \rho_{j(i)}
\rho_j
: spatial random effect
j(i)
: index of the spatial entity for observation i
.
Spatial autocorrelation:
An intrinsic conditional autoregressive model (iCAR) is assumed:
\rho_j \sim \mathcal{N}ormal(\mu_j,V_{\rho} / n_j)
\mu_j
: mean of \rho_{j'}
in the
neighborhood of j
.
V_{\rho}
: variance of the spatial random effects.
n_j
: number of neighbors for spatial entity j
.
Observation process:
y_i \sim \mathcal{B}inomial(z_i * \delta_i, t_i)
logit(\delta_i) = W_i \gamma
Value
mcmc |
An mcmc object that contains the posterior sample. This
object can be summarized by functions provided by the coda
package. The posterior sample of the deviance |
rho.pred |
If |
prob.p.pred |
If |
prob.p.latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
prob.q.latent |
Predictive posterior mean of the probability associated to the observability process for each observation. |
Author(s)
Ghislain Vieilledent ghislain.vieilledent@cirad.fr
References
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
See Also
Examples
## Not run:
#==============================================
# hSDM.ZIB.iCAR()
# Example with simulated data
#==============================================
#============
#== Preambule
library(hSDM)
library(raster)
library(sp)
library(mvtnorm)
#==================
#== Data simulation
# Set seed for repeatability
seed <- 1234
# Target parameters
beta.target <- matrix(c(0.2,0.5,0.5),ncol=1)
gamma.target <- matrix(c(1),ncol=1)
## Uncomment if you want covariates on the observability process
## gamma.target <- matrix(c(0.2,0.5,0.5),ncol=1)
Vrho.target <- 1 # Spatial Variance
# Landscape
Landscape <- raster(ncol=20,nrow=20,crs='+proj=utm +zone=1')
ncell <- ncell(Landscape)
# Neighbors
neighbors.mat <- adjacent(Landscape, cells=c(1:ncell), directions=8, pairs=TRUE, sorted=TRUE)
n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2]
adj <- neighbors.mat[,2]
# Generate symmetric adjacency matrix, A
A <- matrix(0,ncell,ncell)
index.start <- 1
for (i in 1:ncell) {
index.end <- index.start+n.neighbors[i]-1
A[i,adj[c(index.start:index.end)]] <- 1
index.start <- index.end+1
}
# Spatial effects
d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR
Q <- diag(n.neighbors)-d*A + diag(.0001,ncell) # Add small constant to make Q non-singular
covrho <- Vrho.target*solve(Q) # Covariance of rhos
set.seed(seed)
rho <- c(rmvnorm(1,sigma=covrho)) # Spatial Random Effects
rho <- rho-mean(rho) # Centering rhos on zero
# Visited cells
n.visited <- 150 # Compare with 400, 350 and 100 for example
set.seed(seed)
visited.cells <- sort(sample(1:ncell,n.visited,replace=FALSE)) # Draw visited cells at random
notvisited.cells <- c(1:ncell)[-visited.cells]
# Number of observations
nobs <- 300
# Cell vector
set.seed(seed)
cells <- c(visited.cells,sample(visited.cells,nobs-n.visited,replace=TRUE))
coords <- xyFromCell(Landscape,cells) # Get coordinates
# Covariates for "suitability" process
set.seed(seed)
X1.cell <- rnorm(n=ncell,0,1)
set.seed(2*seed)
X2.cell <- rnorm(n=ncell,0,1)
X1 <- X1.cell[cells]
X2 <- X2.cell[cells]
X <- cbind(rep(1,nobs),X1,X2)
# Covariates for "observability" process
W <- cbind(rep(1,nobs))
## Uncomment if you want covariates on the observability process
## set.seed(3*seed)
## W1 <- rnorm(n=nobs,0,1)
## set.seed(4*seed)
## W2 <- rnorm(n=nobs,0,1)
## W <- cbind(rep(1,nobs),W1,W2)
#== Simulating latent variables
# Suitability
logit.theta.1 <- vector()
for (n in 1:nobs) {
logit.theta.1[n] <- X[n,]%*%beta.target+rho[cells[n]]
}
theta.1 <- inv.logit(logit.theta.1)
set.seed(seed)
y.1 <- rbinom(nobs,1,theta.1)
# Observability
set.seed(seed)
trials <- rpois(nobs,5) # Number of trial associated to each observation
trials[trials==0] <- 1
logit.theta.2 <- W%*%gamma.target
theta.2 <- inv.logit(logit.theta.2)
set.seed(seed)
y.2 <- rbinom(nobs,trials,theta.2)
#== Simulating response variable
Y <- y.2*y.1
#== Data-set
Data <- data.frame(Y,trials,cells,X1,X2)
## Uncomment if you want covariates on the observability process
## Data <- data.frame(Y,trials,cells,X1,X2,W1,W2)
Data <- SpatialPointsDataFrame(coords=coords,data=Data)
plot(Data)
#== Data-set for predictions (suitability on each spatial cell)
Data.pred <- data.frame(X1=X1.cell,X2=X2.cell,cells=c(1:ncell))
#==================================
#== Site-occupancy model
mod.hSDM.ZIB.iCAR <- hSDM.ZIB.iCAR(presences=Data$Y,
trials=Data$trials,
suitability=~X1+X2,
observability=~1,
spatial.entity=Data$cells,
data=Data,
n.neighbors=n.neighbors,
neighbors=adj,
## suitability.pred=NULL,
## spatial.entity.pred=NULL,
suitability.pred=Data.pred,
spatial.entity.pred=Data.pred$cells,
burnin=5000, mcmc=5000, thin=5,
beta.start=0,
gamma.start=0,
Vrho.start=10,
priorVrho="1/Gamma",
#priorVrho="Uniform",
#priorVrho=10,
mubeta=0, Vbeta=1.0E6,
mugamma=0, Vgamma=1.0E6,
shape=0.5, rate=0.0005,
#Vrho.max=1000,
seed=1234, verbose=1,
save.rho=1, save.p=0)
#==========
#== Outputs
#= Parameter estimates
summary(mod.hSDM.ZIB.iCAR$mcmc)
#= MCMC and posteriors
pdf(file="Posteriors_hSDM.ZIB.iCAR.pdf")
plot(mod.hSDM.ZIB.iCAR$mcmc)
dev.off()
pdf(file="Posteriors.rho_hSDM.ZIB.iCAR.pdf")
plot(mod.hSDM.ZIB.iCAR$rho.pred)
dev.off()
#= Summary plots
# rho
r.rho <- r.rho.pred <- r.visited <- Landscape
r.rho[] <- rho
rho.pred <- apply(mod.hSDM.ZIB.iCAR$rho.pred,2,mean)
r.rho.pred[] <- rho.pred
r.visited[] <- 0
r.visited[visited.cells] <- 1
# prob.p
r.prob.p <- Landscape
r.prob.p[] <- mod.hSDM.ZIB.iCAR$prob.p.pred
pdf(file="Summary_hSDM.ZIB.iCAR.pdf")
par(mfrow=c(3,2))
plot(r.rho, main="rho target")
plot(r.visited,main="Visited cells and presences")
plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5)
plot(r.rho.pred, main="rho estimated")
plot(rho[visited.cells],rho.pred[visited.cells],
xlab="rho target",
ylab="rho estimated")
points(rho[notvisited.cells],rho.pred[notvisited.cells],pch=16,col="blue")
legend(x=-4,y=3.5,legend="Unvisited cells",col="blue",pch=16,bty="n")
abline(a=0,b=1,col="red")
plot(r.prob.p,main="Proba of presence")
plot(Data[Y>0,],add=TRUE,pch=16,cex=0.5)
dev.off()
## End(Not run)