hltm2 {hIRT} | R Documentation |
Hierarchical Latent Trait Models with Known Item Parameters.
Description
hltm2
fits a hierarchical latent trait model where the item parameters
are known and supplied by the user.
Usage
hltm2(y, x = NULL, z = NULL, item_coefs, control = list())
Arguments
y |
A data frame or matrix of item responses. |
x |
An optional model matrix, including the intercept term, that predicts the mean of the latent preference. If not supplied, only the intercept term is included. |
z |
An optional model matrix, including the intercept term, that predicts the variance of the latent preference. If not supplied, only the intercept term is included. |
item_coefs |
A list of known item parameters. The parameters of item |
control |
A list of control values
|
Value
An object of class hltm
.
coefficients |
A data frame of parameter estimates, standard errors, z values and p values. |
scores |
A data frame of EAP estimates of latent preferences and their approximate standard errors. |
vcov |
Variance-covariance matrix of parameter estimates. |
log_Lik |
The log-likelihood value at convergence. |
N |
Number of units. |
J |
Number of items. |
H |
A vector denoting the number of response categories for each item. |
ylevels |
A list showing the levels of the factorized response categories. |
p |
The number of predictors for the mean equation. |
q |
The number of predictors for the variance equation. |
control |
List of control values. |
call |
The matched call. |
Examples
y <- nes_econ2008[, -(1:3)]
x <- model.matrix( ~ party * educ, nes_econ2008)
z <- model.matrix( ~ party, nes_econ2008)
dichotomize <- function(x) findInterval(x, c(mean(x, na.rm = TRUE)))
y_bin <- y
y_bin[] <- lapply(y, dichotomize)
n <- nrow(nes_econ2008)
id_train <- sample.int(n, n/4)
id_test <- setdiff(1:n, id_train)
y_bin_train <- y_bin[id_train, ]
x_train <- x[id_train, ]
z_train <- z[id_train, ]
mod_train <- hltm(y_bin_train, x_train, z_train)
y_bin_test <- y_bin[id_test, ]
x_test <- x[id_test, ]
z_test <- z[id_test, ]
item_coefs <- lapply(coef_item(mod_train), `[[`, "Estimate")
model_test <- hltm2(y_bin_test, x_test, z_test, item_coefs = item_coefs)