h2o.randomForest {h2o} | R Documentation |
Build a Random Forest model
Description
Builds a Random Forest model on an H2OFrame.
Usage
h2o.randomForest(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
score_each_iteration = FALSE,
score_tree_interval = 0,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
offset_column = NULL,
weights_column = NULL,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
ntrees = 50,
max_depth = 20,
min_rows = 1,
nbins = 20,
nbins_top_level = 1024,
nbins_cats = 1024,
r2_stopping = Inf,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),
stopping_tolerance = 0.001,
max_runtime_secs = 0,
seed = -1,
build_tree_one_node = FALSE,
mtries = -1,
sample_rate = 0.632,
sample_rate_per_class = NULL,
binomial_double_trees = FALSE,
checkpoint = NULL,
col_sample_rate_change_per_level = 1,
col_sample_rate_per_tree = 1,
min_split_improvement = 1e-05,
histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",
"RoundRobin", "UniformRobust"),
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary",
"Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),
calibrate_model = FALSE,
calibration_frame = NULL,
calibration_method = c("AUTO", "PlattScaling", "IsotonicRegression"),
distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",
"tweedie", "laplace", "quantile", "huber"),
custom_metric_func = NULL,
export_checkpoints_dir = NULL,
check_constant_response = TRUE,
gainslift_bins = -1,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO"),
verbose = FALSE
)
Arguments
x |
(Optional) A vector containing the names or indices of the predictor variables to use in building the model. If x is missing, then all columns except y are used. |
y |
The name or column index of the response variable in the data. The response must be either a numeric or a categorical/factor variable. If the response is numeric, then a regression model will be trained, otherwise it will train a classification model. |
training_frame |
Id of the training data frame. |
model_id |
Destination id for this model; auto-generated if not specified. |
validation_frame |
Id of the validation data frame. |
nfolds |
Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to 0. |
keep_cross_validation_models |
|
keep_cross_validation_predictions |
|
keep_cross_validation_fold_assignment |
|
score_each_iteration |
|
score_tree_interval |
Score the model after every so many trees. Disabled if set to 0. Defaults to 0. |
fold_assignment |
Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based on the response variable, for classification problems. Must be one of: "AUTO", "Random", "Modulo", "Stratified". Defaults to AUTO. |
fold_column |
Column with cross-validation fold index assignment per observation. |
ignore_const_cols |
|
offset_column |
Offset column. This argument is deprecated and has no use for Random Forest. |
weights_column |
Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. This is typically the number of times a row is repeated, but non-integer values are supported as well. During training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate prediction, remove all rows with weight == 0. |
balance_classes |
|
class_sampling_factors |
Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes. |
max_after_balance_size |
Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Defaults to 5.0. |
ntrees |
Number of trees. Defaults to 50. |
max_depth |
Maximum tree depth (0 for unlimited). Defaults to 20. |
min_rows |
Fewest allowed (weighted) observations in a leaf. Defaults to 1. |
nbins |
For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point Defaults to 20. |
nbins_top_level |
For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease by factor of two per level Defaults to 1024. |
nbins_cats |
For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher values can lead to more overfitting. Defaults to 1024. |
r2_stopping |
r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds this Defaults to 1.797693135e+308. |
stopping_rounds |
Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) Defaults to 0. |
stopping_metric |
Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO. |
stopping_tolerance |
Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) Defaults to 0.001. |
max_runtime_secs |
Maximum allowed runtime in seconds for model training. Use 0 to disable. Defaults to 0. |
seed |
Seed for random numbers (affects certain parts of the algo that are stochastic and those might or might not be enabled by default). Defaults to -1 (time-based random number). |
build_tree_one_node |
|
mtries |
Number of variables randomly sampled as candidates at each split. If set to -1, defaults to sqrt{p} for classification and p/3 for regression (where p is the # of predictors Defaults to -1. |
sample_rate |
Row sample rate per tree (from 0.0 to 1.0) Defaults to 0.632. |
sample_rate_per_class |
A list of row sample rates per class (relative fraction for each class, from 0.0 to 1.0), for each tree |
binomial_double_trees |
|
checkpoint |
Model checkpoint to resume training with. |
col_sample_rate_change_per_level |
Relative change of the column sampling rate for every level (must be > 0.0 and <= 2.0) Defaults to 1. |
col_sample_rate_per_tree |
Column sample rate per tree (from 0.0 to 1.0) Defaults to 1. |
min_split_improvement |
Minimum relative improvement in squared error reduction for a split to happen Defaults to 1e-05. |
histogram_type |
What type of histogram to use for finding optimal split points Must be one of: "AUTO", "UniformAdaptive", "Random", "QuantilesGlobal", "RoundRobin", "UniformRobust". Defaults to AUTO. |
categorical_encoding |
Encoding scheme for categorical features Must be one of: "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited". Defaults to AUTO. |
calibrate_model |
|
calibration_frame |
Data for model calibration |
calibration_method |
Calibration method to use Must be one of: "AUTO", "PlattScaling", "IsotonicRegression". Defaults to AUTO. |
distribution |
Distribution. This argument is deprecated and has no use for Random Forest. |
custom_metric_func |
Reference to custom evaluation function, format: 'language:keyName=funcName' |
export_checkpoints_dir |
Automatically export generated models to this directory. |
check_constant_response |
|
gainslift_bins |
Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. Defaults to -1. |
auc_type |
Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO. |
verbose |
|
Value
Creates a H2OModel object of the right type.
See Also
predict.H2OModel
for prediction
Examples
## Not run:
library(h2o)
h2o.init()
# Import the cars dataset
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
# Set predictors and response; set response as a factor
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
# Train the DRF model
cars_drf <- h2o.randomForest(x = predictors, y = response,
training_frame = cars, nfolds = 5,
seed = 1234)
## End(Not run)