h2o.genericModel {h2o} | R Documentation |
Imports a model under given path, creating a Generic model with it.
Description
Usage example: generic_model <- h2o.genericModel(model_file_path = "/path/to/mojo.zip") predictions <- h2o.predict(generic_model, dataset)
Usage
h2o.genericModel(mojo_file_path, model_id = NULL)
Arguments
mojo_file_path |
Filesystem path to the model imported |
model_id |
Model ID, default is NULL |
Value
Returns H2O Generic Model based on given embedded model
Examples
## Not run:
# Import default Iris dataset as H2O frame
data <- as.h2o(iris)
# Train a very simple GBM model
features <- c("Sepal.Length", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
original_model <- h2o.gbm(x = features, y = "Species", training_frame = data)
# Download the trained GBM model as MOJO (temporary directory used in this example)
mojo_original_name <- h2o.download_mojo(model = original_model, path = tempdir())
mojo_original_path <- paste0(tempdir(), "/", mojo_original_name)
# Import the MOJO as Generic model
generic_model <- h2o.genericModel(mojo_original_path)
# Perform scoring with the generic model
generic_model_predictions <- h2o.predict(generic_model, data)
## End(Not run)
[Package h2o version 3.44.0.3 Index]