h2o.disparate_analysis {h2o} | R Documentation |
Create a frame containing aggregations of intersectional fairness across the models.
Description
Create a frame containing aggregations of intersectional fairness across the models.
Usage
h2o.disparate_analysis(
models,
newdata,
protected_columns,
reference,
favorable_class,
air_metric = "selectedRatio",
alpha = 0.05
)
Arguments
models |
List of H2O Models |
newdata |
H2OFrame |
protected_columns |
List of categorical columns that contain sensitive information such as race, gender, age etc. |
reference |
List of values corresponding to a reference for each protected columns. If set to NULL, it will use the biggest group as the reference. |
favorable_class |
Positive/favorable outcome class of the response. |
air_metric |
Metric used for Adverse Impact Ratio calculation. Defaults to “selectedRatio“. |
alpha |
The alpha level is the probability of rejecting the null hypothesis that the protected group and the reference came from the same population when the null hypothesis is true. |
Value
frame containing aggregations of intersectional fairness across the models
Examples
## Not run:
library(h2o)
h2o.init()
data <- h2o.importFile(paste0("https://s3.amazonaws.com/h2o-public-test-data/smalldata/",
"admissibleml_test/taiwan_credit_card_uci.csv"))
x <- c('LIMIT_BAL', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1',
'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2',
'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6')
y <- "default payment next month"
protected_columns <- c('SEX', 'EDUCATION')
for (col in c(y, protected_columns))
data[[col]] <- as.factor(data[[col]])
splits <- h2o.splitFrame(data, 0.8)
train <- splits[[1]]
test <- splits[[2]]
reference <- c(SEX = "1", EDUCATION = "2") # university educated man
favorable_class <- "0" # no default next month
aml <- h2o.automl(x, y, training_frame = train, max_models = 3)
h2o.disparate_analysis(aml, test, protected_columns = protected_columns,
reference = reference, favorable_class = favorable_class)
## End(Not run)
[Package h2o version 3.44.0.3 Index]