h2o.aecu {h2o} | R Documentation |
Retrieve the default AECU (Average Excess Cumulative Uplift = area between AUUC and random AUUC)
Description
Retrieves the AECU value from an H2OBinomialUpliftMetrics. You need to specificy the type of AECU using metric parameter. Defaults "qini". Qini AECU equals the Qini value. If "train" and "valid" parameters are FALSE (default), then the training AECU value is returned. If more than one parameter is set to TRUE, then a named vector of AECUs are returned, where the names are "train", "valid".
Usage
h2o.aecu(object, train = FALSE, valid = FALSE, metric = "qini")
Arguments
object |
|
train |
Retrieve the training AECU |
valid |
Retrieve the validation AECU |
metric |
Specify metric of AECU. Posibilities are "qini", "lift", "gain", defaults "qini". |
Examples
## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)
model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")
perf <- h2o.performance(model, train=TRUE)
h2o.aecu(perf)
## End(Not run)
[Package h2o version 3.44.0.3 Index]