as.h2o {h2o}R Documentation

Create H2OFrame

Description

Import R object to the H2O cluster.

Usage

as.h2o(x, destination_frame = "", ...)

## Default S3 method:
as.h2o(x, destination_frame = "", ...)

## S3 method for class 'H2OFrame'
as.h2o(x, destination_frame = "", ...)

## S3 method for class 'data.frame'
as.h2o(x, destination_frame = "", use_datatable = TRUE, ...)

## S3 method for class 'Matrix'
as.h2o(x, destination_frame = "", use_datatable = TRUE, ...)

Arguments

x

An R object.

destination_frame

A string with the desired name for the H2OFrame

...

arguments passed to method arguments.

use_datatable

allow usage of data.table

Details

Method as.h2o.data.frame will use fwrite if data.table package is installed in required version.

To speedup execution time for large sparse matrices, use h2o datatable. Make sure you have installed and imported data.table and slam packages. Turn on h2o datatable by options("h2o.use.data.table"=TRUE)

References

https://h2o.ai/blog/2016/fast-csv-writing-for-r/

See Also

use.package

Examples

## Not run: 
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
euro_hf <- as.h2o(euro)
letters_hf <- as.h2o(letters)
state_hf <- as.h2o(state.x77)
iris_hf_2 <- as.h2o(iris_hf)
stopifnot(is.h2o(iris_hf), dim(iris_hf) == dim(iris),
          is.h2o(euro_hf), dim(euro_hf) == c(length(euro), 1L),
          is.h2o(letters_hf), dim(letters_hf) == c(length(letters), 1L),
          is.h2o(state_hf), dim(state_hf) == dim(state.x77),
          is.h2o(iris_hf_2), dim(iris_hf_2) == dim(iris_hf))
if (requireNamespace("Matrix", quietly=TRUE)) {
  data <- rep(0, 100)
  data[(1:10) ^ 2] <- 1:10 * pi
  m <- matrix(data, ncol = 20, byrow = TRUE)
  m <- Matrix::Matrix(m, sparse = TRUE)
  m_hf <- as.h2o(m)
  stopifnot(is.h2o(m_hf), dim(m_hf) == dim(m))
}

## End(Not run)

[Package h2o version 3.44.0.3 Index]