gvc_pvar {gvcR} | R Documentation |
Phenotypic Variance
Description
gvc_pvar computes phenotypic variances for given traits of different genotypes from replicated data using methodology explained by Burton, G. W. & Devane, E. H. (1953) (<doi:10.2134/agronj1953.00021962004500100005x>) and Allard, R.W. (2010, ISBN:8126524154).
Usage
gvc_pvar(y, x = NULL, rep, geno, env, data)
Arguments
y |
Response |
x |
Covariate by default NULL |
rep |
Repliction |
geno |
Genotypic Factor |
env |
Environmental Factor |
data |
data.frame |
Value
Phenotypic Variance
Author(s)
Sami Ullah (samiullahuos@gmail.com)
Muhammad Yaseen (myaseen208@gmail.com)
References
R.K. Singh and B.D.Chaudhary Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi
Williams, E.R., Matheson, A.C. and Harwood, C.E. (2002).Experimental Design and Analysis for Tree Improvement. CSIRO Publishing.
Examples
set.seed(12345)
Response <- c(
rnorm(48, mean = 15000, sd = 500)
, rnorm(48, mean = 5000, sd = 500)
, rnorm(48, mean = 1000, sd = 500)
)
Rep <- as.factor(rep(1:3, each = 48))
Variety <- gl(n = 4, k = 4, length = 144, labels = letters[1:4])
Env <- gl(n = 3, k = 16, length = 144, labels = letters[1:3])
df1 <- data.frame(Response, Rep, Variety, Env)
#' # Penotypic Variance
pvar <-
gvc_pvar(
y = Response
, rep = Rep
, geno = Variety
, env = Env
, data = df1
)
pvar
library(eda4treeR)
data(DataExam6.2)
pvar <-
gvc_pvar(
y = Dbh.mean
, rep = Replication
, geno = Family
, env = Province
, data = DataExam6.2
)
pvar
[Package gvcR version 0.1.0 Index]