gvc_gvar {gvcR} | R Documentation |
Genotypic Variance
Description
gvc_gvar computes genotypic variances for given traits of different genotypes from replicated data using methodology explained by Burton, G. W. & Devane, E. H. (1953) (<doi:10.2134/agronj1953.00021962004500100005x>) and Allard, R.W. (2010, ISBN:8126524154).
Usage
gvc_gvar(y, x = NULL, rep, geno, env, data)
Arguments
y |
Response |
x |
Covariate by default NULL |
rep |
Repliction |
geno |
Genotypic Factor |
env |
Environmental Factor |
data |
data.frame |
Value
Genotypic Variance
Author(s)
Sami Ullah (samiullahuos@gmail.com)
Muhammad Yaseen (myaseen208@gmail.com)
References
R.K. Singh and B.D.Chaudhary Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi
Williams, E.R., Matheson, A.C. and Harwood, C.E. (2002).Experimental Design and Analysis for Tree Improvement. CSIRO Publishing.
Examples
set.seed(12345)
Response <- c(
rnorm(48, mean = 15000, sd = 500)
, rnorm(48, mean = 5000, sd = 500)
, rnorm(48, mean = 1000, sd = 500)
)
Rep <- as.factor(rep(1:3, each = 48))
Variety <- gl(n = 4, k = 4, length = 144, labels = letters[1:4])
Env <- gl(n = 3, k = 16, length = 144, labels = letters[1:3])
df1 <- data.frame(Response, Rep, Variety, Env)
# Genotypic Variance
gvar <-
gvc_gvar(
y = Response
, rep = Rep
, geno = Variety
, env = Env
, data = df1
)
gvar
library(eda4treeR)
data(DataExam6.2)
gvar <-
gvc_gvar(
y = Dbh.mean
, rep = Replication
, geno = Family
, env = Province
, data = DataExam6.2
)
gvar
[Package gvcR version 0.1.0 Index]