gvc_gvar {gvcR}R Documentation

Genotypic Variance

Description

gvc_gvar computes genotypic variances for given traits of different genotypes from replicated data using methodology explained by Burton, G. W. & Devane, E. H. (1953) (<doi:10.2134/agronj1953.00021962004500100005x>) and Allard, R.W. (2010, ISBN:8126524154).

Usage

gvc_gvar(y, x = NULL, rep, geno, env, data)

Arguments

y

Response

x

Covariate by default NULL

rep

Repliction

geno

Genotypic Factor

env

Environmental Factor

data

data.frame

Value

Genotypic Variance

Author(s)

  1. Sami Ullah (samiullahuos@gmail.com)

  2. Muhammad Yaseen (myaseen208@gmail.com)

References

  1. R.K. Singh and B.D.Chaudhary Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi

  1. Williams, E.R., Matheson, A.C. and Harwood, C.E. (2002).Experimental Design and Analysis for Tree Improvement. CSIRO Publishing.

Examples

set.seed(12345)
Response <- c(
               rnorm(48, mean = 15000, sd = 500)
             , rnorm(48, mean =  5000, sd = 500)
             , rnorm(48, mean =  1000, sd = 500)
             )
Rep      <- as.factor(rep(1:3, each = 48))
Variety  <- gl(n = 4, k =  4, length = 144, labels = letters[1:4])
Env      <- gl(n = 3, k = 16, length = 144, labels = letters[1:3])
df1      <- data.frame(Response, Rep, Variety, Env)

# Genotypic Variance
gvar <-
 gvc_gvar(
           y    = Response
         , rep  = Rep
         , geno = Variety
         , env  = Env
         , data = df1
         )
gvar

library(eda4treeR)
data(DataExam6.2)
gvar <-
  gvc_gvar(
           y    = Dbh.mean
         , rep  = Replication
         , geno = Family
         , env  = Province
         , data = DataExam6.2
         )
gvar

[Package gvcR version 0.1.0 Index]