gstsm {gstsm} | R Documentation |
GSTSM
Description
S3 class definition for GSTSM.
Usage
gstsm(sts_dataset, spatial_positions, gamma, beta, sigma)
Arguments
sts_dataset |
STS dataset |
spatial_positions |
set of spatial positions |
gamma |
minimum temporal frequency |
beta |
minimum group size |
sigma |
maximum distance between group points |
Details
This algorithm is designed to the identification of frequent sequences in STS datasets from the concept of Solid Ranged Groups (SRG). GSTSM is based on the candidate-generating principle. The goal is to start finding SRGs for sequences of size one. Then it explores the support and the number of occurrences of SRGs for larger sequences with a limited number of scans over the database.
Value
a GSTSM object
Examples
library("gstsm")
D <- as.data.frame(matrix(c("B", "B", "A", "C", "A",
"C", "B", "C", "A", "B",
"C", "C", "A", "C", "A",
"B", "B", "D", "A", "B",
"B", "D", "D", "B", "D"
), nrow = 5, ncol = 5, byrow = TRUE))
ponto <- c("p1", "p2", "p3", "p4", "p5")
x <- c(1, 2, 3, 4, 5)
y <- c(0, 0, 0, 0, 0)
z <- y
P <- data.frame(ponto=ponto, x=x, y=y, z=z, stringsAsFactors = FALSE)
gamma <- 0.8
beta <- 2
sigma <- 1
gstsm_object <- gstsm(D, P, gamma, beta, sigma)
result <- mine(gstsm_object)
[Package gstsm version 1.0.0 Index]