| predict.ssanova {gss} | R Documentation |
Predicting from Smoothing Spline ANOVA Fits
Description
Evaluate terms in a smoothing spline ANOVA fit at arbitrary points. Standard errors of the terms can be requested for use in constructing Bayesian confidence intervals.
Usage
## S3 method for class 'ssanova'
predict(object, newdata, se.fit=FALSE,
include=c(object$terms$labels,object$lab.p), ...)
## S3 method for class 'ssanova0'
predict(object, newdata, se.fit=FALSE,
include=c(object$terms$labels,object$lab.p), ...)
## S3 method for class 'ssanova'
predict1(object, contr=c(1,-1), newdata, se.fit=TRUE,
include=c(object$terms$labels,object$lab.p), ...)
Arguments
object |
Object of class inheriting from |
newdata |
Data frame or model frame in which to predict. |
se.fit |
Flag indicating if standard errors are required. |
include |
List of model terms to be included in the
prediction. The |
contr |
Contrast coefficients. |
... |
Ignored. |
Value
For se.fit=FALSE, predict.ssanova returns a vector of
the evaluated fit.
For se.fit=TRUE, predict.ssanova returns a list
consisting of the following elements.
fit |
Vector of evaluated fit. |
se.fit |
Vector of standard errors. |
Note
For mixed-effect models through ssanova or
gssanova, the Z matrix is set to 0 if not supplied.
To supply the Z matrix, add an element random=I(...) in
newdata, where the as-is function I(...) preserves the
integrity of the Z matrix in data frame.
predict1.ssanova takes a list of data frames in
newdata representing x1, x2, etc. By default, it calculates
f(x1)-f(x2) along with standard errors. While pairwise contrast is
the targeted application, all linear combinations can be computed.
For "gssanova" objects, the results are on the link scale.
See also predict9.gssanova.
References
Gu, C. (1992), Penalized likelihood regression: a Bayesian analysis. Statistica Sinica, 2, 255–264.
Gu, C. and Wahba, G. (1993), Smoothing spline ANOVA with component-wise Bayesian "confidence intervals." Journal of Computational and Graphical Statistics, 2, 97–117.
Kim, Y.-J. and Gu, C. (2004), Smoothing spline Gaussian regression: more scalable computation via efficient approximation. Journal of the Royal Statistical Society, Ser. B, 66, 337–356.
See Also
Fitting functions ssanova, ssanova0,
gssanova, gssanova0 and
methods summary.ssanova,
summary.gssanova, summary.gssanova0,
project.ssanova, fitted.ssanova.
Examples
## THE FOLLOWING EXAMPLE IS TIME-CONSUMING
## Not run:
## Fit a model with cubic and thin-plate marginals, where geog is 2-D
data(LakeAcidity)
fit <- ssanova(ph~log(cal)*geog,,LakeAcidity)
## Obtain estimates and standard errors on a grid
new <- data.frame(cal=1,geog=I(matrix(0,1,2)))
new <- model.frame(~log(cal)+geog,new)
predict(fit,new,se=TRUE)
## Evaluate the geog main effect
predict(fit,new,se=TRUE,inc="geog")
## Evaluate the sum of the geog main effect and the interaction
predict(fit,new,se=TRUE,inc=c("geog","log(cal):geog"))
## Evaluate the geog main effect on a grid
grid <- seq(-.04,.04,len=21)
new <- model.frame(~geog,list(geog=cbind(rep(grid,21),rep(grid,rep(21,21)))))
est <- predict(fit,new,se=TRUE,inc="geog")
## Plot the fit and standard error
par(pty="s")
contour(grid,grid,matrix(est$fit,21,21),col=1)
contour(grid,grid,matrix(est$se,21,21),add=TRUE,col=2)
## Clean up
rm(LakeAcidity,fit,new,grid,est)
dev.off()
## End(Not run)