gscaLCR {gscaLCA} | R Documentation |
The 2nd and 3rd step of gscaLCA, which are the partitioning and fitting regression
Description
The 2nd and 3rd step of gscaLCA, which are the partitioning and fitting regression in the latent class regression.
Usage
gscaLCR(results.obj, covnames, multinomial.ref = "MAX")
Arguments
results.obj |
the results of gscaLCA. |
covnames |
A character vector of covariates. The covariates are used when latent class regression (LCR) is fitted. |
multinomial.ref |
A character element. Options of |
Value
Results of the gscaLCR, fitting regression after partioning in addtion to gscaLCA results.
Examples
R2 = gscaLCA (dat = AddHealth[1:500, ], # Data has to include the possible covarite to run gscaLCR
varnames = names(AddHealth)[2:6],
ID.var = "AID",
num.class = 3,
num.factor = "EACH",
Boot.num = 0,
multiple.Core = F)
R2.gender = gscaLCR (R2, covnames = "Gender")
summary(R2.gender, "multinomial.hard") # hard partitioning with multinomial regression
summary(R2.gender, "multinomial.soft") # soft partitioning with multinomial regression
summary(R2.gender, "binomial.hard") # hard partitioning with binomial regression
summary(R2.gender, "binomial.soft") # soft partitioning with binomial regression
[Package gscaLCA version 0.0.5 Index]