fixed_design_ahr {gsDesign2} | R Documentation |
Fixed design under non-proportional hazards
Description
Computes fixed design sample size (given power) or power (given sample size) by:
-
fixed_design_ahr()
- Average hazard ratio method. -
fixed_design_fh()
- Weighted logrank test with Fleming-Harrington weights (Farrington and Manning, 1990). -
fixed_design_mb()
- Weighted logrank test with Magirr-Burman weights. -
fixed_design_lf()
- Lachin-Foulkes method (Lachin and Foulkes, 1986). -
fixed_design_maxcombo()
- MaxCombo method. -
fixed_design_rmst()
- RMST method. -
fixed_design_milestone()
- Milestone method.
Additionally, fixed_design_rd()
provides fixed design for binary endpoint
with treatment effect measuring in risk difference.
Usage
fixed_design_ahr(
enroll_rate,
fail_rate,
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
event = NULL
)
fixed_design_fh(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
rho = 0,
gamma = 0
)
fixed_design_lf(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate
)
fixed_design_maxcombo(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
rho = c(0, 0, 1),
gamma = c(0, 1, 0),
tau = rep(-1, 3)
)
fixed_design_mb(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
tau = 6
)
fixed_design_milestone(
alpha = 0.025,
power = NULL,
ratio = 1,
enroll_rate,
fail_rate,
study_duration = 36,
tau = NULL
)
fixed_design_rd(
alpha = 0.025,
power = NULL,
ratio = 1,
p_c,
p_e,
rd0 = 0,
n = NULL
)
fixed_design_rmst(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
tau = NULL
)
Arguments
enroll_rate |
Enrollment rates. |
fail_rate |
Failure and dropout rates. |
alpha |
One-sided Type I error (strictly between 0 and 1). |
power |
Power ( |
ratio |
Experimental:Control randomization ratio. |
study_duration |
Study duration. |
event |
Targeted event at each analysis. |
rho |
A vector of numbers paring with gamma and tau for maxcombo test. |
gamma |
A vector of numbers paring with rho and tau for maxcombo test. |
tau |
Test parameter in RMST. |
p_c |
A numerical value of the control arm rate. |
p_e |
A numerical value of the experimental arm rate. |
rd0 |
Risk difference under null hypothesis, default is 0. |
n |
Sample size. If NULL with power input, the sample size will be computed to achieve the targeted power |
Value
A list of design characteristic summary.
Examples
# AHR method ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_ahr(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_ahr(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36
)
x %>% summary()
# WLR test with FH weights ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_fh(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36,
rho = 1, gamma = 1
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_fh(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36,
rho = 1, gamma = 1
)
x %>% summary()
# LF method ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_lf(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001
),
study_duration = 36
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_fh(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001
),
study_duration = 36
)
x %>% summary()
# MaxCombo test ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_maxcombo(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36,
rho = c(0, 0.5), gamma = c(0, 0), tau = c(-1, -1)
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_maxcombo(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36,
rho = c(0, 0.5), gamma = c(0, 0), tau = c(-1, -1)
)
x %>% summary()
# WLR test with MB weights ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_mb(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36,
tau = 4
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_mb(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001
),
study_duration = 36,
tau = 4
)
x %>% summary()
# Milestone method ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_milestone(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001
),
study_duration = 36,
tau = 18
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_milestone(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001
),
study_duration = 36,
tau = 18
)
x %>% summary()
# Binary endpoint with risk differences ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_rd(
alpha = 0.025, power = 0.9, p_c = .15, p_e = .1,
rd0 = 0, ratio = 1
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_rd(
alpha = 0.025, power = NULL, p_c = .15, p_e = .1,
rd0 = 0, n = 2000, ratio = 1
)
x %>% summary()
# RMST method ----
library(dplyr)
# Example 1: given power and compute sample size
x <- fixed_design_rmst(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001
),
study_duration = 36,
tau = 18
)
x %>% summary()
# Example 2: given sample size and compute power
x <- fixed_design_rmst(
alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001
),
study_duration = 36,
tau = 18
)
x %>% summary()