gsBound {gsDesign} | R Documentation |
Boundary derivation - low level
Description
gsBound()
and gsBound1()
are lower-level functions used to
find boundaries for a group sequential design. They are not recommended
(especially gsBound1()
) for casual users. These functions do not
adjust sample size as gsDesign()
does to ensure appropriate power for
a design.
gsBound()
computes upper and lower bounds given boundary crossing
probabilities assuming a mean of 0, the usual null hypothesis.
gsBound1()
computes the upper bound given a lower boundary, upper
boundary crossing probabilities and an arbitrary mean (theta
).
The function gsBound1()
requires special attention to detail and
knowledge of behavior when a design corresponding to the input parameters
does not exist.
Usage
gsBound(I, trueneg, falsepos, tol = 1e-06, r = 18, printerr = 0)
gsBound1(theta, I, a, probhi, tol = 1e-06, r = 18, printerr = 0)
Arguments
I |
Vector containing statistical information planned at each analysis. |
trueneg |
Vector of desired probabilities for crossing upper bound assuming mean of 0. |
falsepos |
Vector of desired probabilities for crossing lower bound assuming mean of 0. |
tol |
Tolerance for error (scalar; default is 0.000001). Normally this will not be changed by the user. This does not translate directly to number of digits of accuracy, so use extra decimal places. |
r |
Single integer value controlling grid for numerical integration as
in Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger
values provide larger number of grid points and greater accuracy. Normally
|
printerr |
If this scalar argument set to 1, this will print messages
from underlying C program. Mainly intended to notify user when an output
solution does not match input specifications. This is not intended to stop
execution as this often occurs when deriving a design in |
theta |
Scalar containing mean (drift) per unit of statistical information. |
a |
Vector containing lower bound that is fixed for use in
|
probhi |
Vector of desired probabilities for crossing upper bound assuming mean of theta. |
Value
Both routines return a list. Common items returned by the two routines are:
k |
The length of vectors input; a scalar. |
theta |
As input in |
I |
As input. |
a |
For |
b |
The derived upper boundary required to yield the input boundary crossing probabilities under the null hypothesis. |
tol |
As input. |
r |
As input. |
error |
Error code. 0 if no error; greater than 0 otherwise. |
gsBound()
also returns the following items:
rates |
a list containing two items: |
falsepos |
vector of upper boundary crossing probabilities as input. |
trueneg |
vector of lower boundary crossing probabilities as input. |
gsBound1()
also returns the following items:
problo |
vector of lower boundary crossing probabilities; computed using input lower bound and derived upper bound. |
probhi |
vector of upper boundary crossing probabilities as input. |
Note
The gsDesign technical manual is available at https://keaven.github.io/gsd-tech-manual/.
Author(s)
Keaven Anderson keaven_anderson@merck.com
References
Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical Trials. Boca Raton: Chapman and Hall.
See Also
vignette("gsDesignPackageOverview")
, gsDesign
,
gsProbability
Examples
# set boundaries so that probability is .01 of first crossing
# each upper boundary and .02 of crossing each lower boundary
# under the null hypothesis
x <- gsBound(
I = c(1, 2, 3) / 3, trueneg = rep(.02, 3),
falsepos = rep(.01, 3)
)
x
# use gsBound1 to set up boundary for a 1-sided test
x <- gsBound1(
theta = 0, I = c(1, 2, 3) / 3, a = rep(-20, 3),
probhi = c(.001, .009, .015)
)
x$b
# check boundary crossing probabilities with gsProbability
y <- gsProbability(k = 3, theta = 0, n.I = x$I, a = x$a, b = x$b)$upper$prob
# Note that gsBound1 only computes upper bound
# To get a lower bound under a parameter value theta:
# use minus the upper bound as a lower bound
# replace theta with -theta
# set probhi as desired lower boundary crossing probabilities
# Here we let set lower boundary crossing at 0.05 at each analysis
# assuming theta=2.2
y <- gsBound1(
theta = -2.2, I = c(1, 2, 3) / 3, a = -x$b,
probhi = rep(.05, 3)
)
y$b
# Now use gsProbability to look at design
# Note that lower boundary crossing probabilities are as
# specified for theta=2.2, but for theta=0 the upper boundary
# crossing probabilities are smaller than originally specified
# above after first interim analysis
gsProbability(k = length(x$b), theta = c(0, 2.2), n.I = x$I, b = x$b, a = -y$b)