predict.grpsurv {grpreg} | R Documentation |
Model predictions for grpsurv objects
Description
Similar to other predict methods, this function returns predictions from a fitted grpsurv
object.
Usage
## S3 method for class 'grpsurv'
predict(
object,
X,
type = c("link", "response", "survival", "hazard", "median", "norm", "coefficients",
"vars", "nvars", "groups", "ngroups"),
lambda,
which = 1:length(object$lambda),
...
)
Arguments
object |
Fitted |
X |
Matrix of values at which predictions are to be made. Not required for some |
type |
Type of prediction:
|
lambda |
Regularization parameter at which predictions are requested. For values of |
which |
Indices of the penalty parameter |
... |
Not used. |
Details
Estimation of baseline survival function conditional on the estimated values of beta
is carried out according to the method described in Chapter 4.3 of Kalbfleisch and Prentice.
Value
The object returned depends on type.
Author(s)
Patrick Breheny
References
Kalbfleish JD and Prentice RL (2002). The Statistical Analysis of Failure Time Data, 2nd edition. Wiley.
See Also
Examples
data(Lung)
X <- Lung$X
y <- Lung$y
group <- Lung$group
fit <- grpsurv(X, y, group)
coef(fit, lambda=0.05)
head(predict(fit, X, type="link", lambda=0.05))
head(predict(fit, X, type="response", lambda=0.05))
# Survival function
S <- predict(fit, X[1,], type="survival", lambda=0.05)
S(100)
S <- predict(fit, X, type="survival", lambda=0.05)
plot(S, xlim=c(0,200))
# Medians
predict(fit, X[1,], type="median", lambda=0.05)
M <- predict(fit, X, type="median")
M[1:10, 1:10]
# Nonzero coefficients
predict(fit, type="vars", lambda=c(0.1, 0.01))
predict(fit, type="nvars", lambda=c(0.1, 0.01))