cv.compare {grpnet} | R Documentation |
Compare Multiple cv.grpnet Solutions
Description
Creates a plot (default) or returns a data frame (otherwise) that compares the cross-validation error for multiple cv.grpnet
fits.
Usage
cv.compare(x,
s = c("lambda.1se", "lambda.min"),
plot = TRUE,
at = 1:length(x),
nse = 1,
point.col = "red",
line.col = "gray",
lwd = 2,
bwd = 0.02,
labels = NULL,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
...)
Arguments
x |
|
s |
the tuning parameter value at which to plot results (if |
plot |
switch controlling whether a plot is produced (default) versus data frame. |
at |
x-axis coordinates for plotting the cv error for each solution. |
nse |
number of standard errors to use for error bars in plot. |
point.col |
color for point used to plot the average of the cv error. |
line.col |
color for lines used to plot the standard error for the cv error. |
lwd |
width of lines used to plot the standard error for the cv error. |
bwd |
width of standard error bars in terms of proportion of |
labels |
labels for x-axis tick marks. Defaults to |
xlim |
axis limits for abscissa (x-axis) |
ylim |
axis limits for ordinate (y-axis) |
xlab |
axis label for abscissa (x-axis) |
ylab |
axis label for ordinate (y-axis) |
... |
additional arguments passed to plotting functions. |
Details
Default behavior creates a plot that displays the mean cv error +/- 1 se for each of the requested solutions.
If the input x
is a single cv.grpnet
object, then the function plots the lambda.min and lambda.1se solutions.
If the input x
is a list of cv.grpnet
objects, then the function plots either the lambda.min or the lambda.1se solution (controlled by s
argument) for all of the input models.
Value
When plot = TRUE
, there is no return value (it produces a plot)
When plot = FALSE
, a data.frame is returned with the mean cv error (and se) for each solution
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Helwig, N. E. (2024). Versatile descent algorithms for group regularization and variable selection in generalized linear models. Journal of Computational and Graphical Statistics. doi:10.1080/10618600.2024.2362232
See Also
plot.cv.grpnet
for plotting cv error path (for all lambdas)
plot.grpnet
for plotting regularization path (for single lambda)
Examples
# load data
data(auto)
# LASSO penalty
set.seed(1)
mod1 <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1)
# MCP penalty
set.seed(1)
mod2 <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1, penaly = "MCP")
# SCAD penalty
set.seed(1)
mod3 <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1, penaly = "SCAD")
# compare lambda.min and lambda.1se for mod1
cv.compare(mod1)
# compare lambda.1se for mod1, mod2, mod3
cv.compare(x = list(mod1, mod2, mod3), labels = c("LASSO", "MCP", "SCAD"))