FAnova {grove} | R Documentation |
Bayesian functional ANOVA
Description
This function carries out Bayesian functional ANOVA using the Normal Inverse Gamma Markov Grove method of Ma and Soriano (2016).
Usage
FAnova(W, X, formula, nu = 5, is.kappa.fixed = FALSE, gamma.kappa = 0.3,
eta.kappa = 0.1, n.samples = 500, transition.mode = "Markov",
method = "Nelder-Mead")
Arguments
W |
An object of class |
X |
Design matrix. |
formula |
An object of class formula. |
nu |
Hyperparameter controlling the heterogeneity in the noise variance. |
is.kappa.fixed |
If |
gamma.kappa |
Hyperparameter for the MT transition matrix. |
eta.kappa |
Hyperparameter for the MT transition matrix. |
n.samples |
Number of posterior draws. |
transition.mode |
Type of transition. The two options are |
method |
Method used for find maxmimum of marginal likelihood. |
Value
An object of class grove
.
References
Ma L. and Soriano J. (2016) Efficient functional ANOVA through wavelet-domain Markov groves. arXiv:1602.03990v2 [stat.ME] (https://arxiv.org/abs/1602.03990v2).
Examples
## Not run:
data <- GenerateSyntheticAnova(st.dev = 5, n.replicates = 5)
W <- DWT(data$noisy.Y)
X <- data$X
ans <- FAnova(W, X, ~ 1 + factorA + factorB)
denoised.data <- InvDWT(ans, x = c(0, 0, 1, 0))
PlotFun(denoised.data)
## End(Not run)