Denoise {grove} | R Documentation |
Bayesian wavelet denoising
Description
This function carries out Bayesian wavelet denoising using the Normal Inverse Gamma Markov Tree method of Ma and Soriano (2016).
Usage
Denoise(W, alpha = 0.5, nu = 5, n.samples = 500,
transition.mode = "Markov", method = "Nelder-Mead")
Arguments
W |
An object of class |
alpha |
Hyperparameter controlling the global smoothness. |
nu |
Hyperparameter controlling variance heterogeneity. If |
n.samples |
Number of posterior draws. |
transition.mode |
Type of transition.
The two options are |
method |
Method used for find maxmimum of marginal likelihood. |
Value
An object of class grove
.
References
Ma L. and Soriano J. (2016) Efficient functional ANOVA through wavelet-domain Markov groves. arXiv:1602.03990v2 [stat.ME] (https://arxiv.org/abs/1602.03990v2).
Examples
data <- wavethresh::DJ.EX(n = 512, noisy = TRUE, rsnr = 5)$doppler
W <- DWT(data)
ans <- Denoise(W)
[Package grove version 1.1.1 Index]