waldTest {groupTesting} | R Documentation |
Wald Chi-Square Test
Description
This function implements the Wald chi-square test on a K
x1
parameter vector theta. The test assumes that thetaHat, a consistent estimator of theta such as MLE, is asymptotically normal with mean theta and covariance matrix Sigma. The function can implement 1 test on theta as well as multiple, Q, tests jointly on theta.
Usage
waldTest(R, thetaHat, Sigma, r = 0, L = NULL)
Arguments
R |
A |
thetaHat |
An estimate of theta. |
Sigma |
An estimated covariance matrix for |
r |
A |
L |
A character string to be used as a name of the test. When NULL, "L" will be used. |
Details
Suppose that Q tests are to be performed jointly on the K by 1 parameter vector theta. Let R be a Q
xK
matrix of known coefficients such as 0, 1, and -1, and r be a Q
x1
matrix of hypothesized values. The hypotheses are H0:
R
\theta
= r
vs. H1
: R
\theta
!= r
. The test statistic has a chi-square distribution with Q degrees of freedom (Buse, 1982; Agresti, 2002).
Value
A data.frame object of the Wald test results.
References
Agresti A. (2002). Categorical Data Analysis (2nd ed.). Wiley. ISBN 0471360937.
Buse A. (1982). The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note. The American Statistician, 36:153-157.
Examples
library(groupTesting)
## Example 1
# Parameter: p (proportion)
MLE <- 0.42
Var <- 0.016
# (a) Test H0: p = 0.50 vs. H1: p != 0.50
R <- matrix(1, nrow=1, ncol=1)
p0 <- 0.50
waldTest( R=R, thetaHat=MLE, r=p0, Sigma=Var )
## Example 2
# Parameter: beta = (beta1, beta2), regression coefficients
MLE <- c(1.09, 2.95)
Cov <- rbind(c(0.21, -0.27),
c(-0.27, 0.66))
# (a) Test H0: beta1 = beta2 vs. H1: beta1 != beta2
R <- rbind(c(1,-1))
waldTest( R=R, thetaHat=MLE, r=0, Sigma=Cov, L="1 vs 2" )
# (b) Test H0: beta1 = 0 vs. H1: beta1 != 0
R <- rbind(c(1,0))
waldTest( R=R, thetaHat=MLE, r=0, Sigma=Cov )
## Example 3
# Parameter: beta = (beta0, beta1, beta2)
MLE <- c(-3.05, 1.99, 0.93)
Cov <- rbind(c( 0.045, -0.022, -0.034),
c(-0.022, 0.032, 0.008),
c(-0.034, 0.008, 0.048))
# Performing simultaneous test:
# H0: beta0 = -3, H0: beta1 = 2, H0: beta2 = 1
# H1: beta0 != -3, H1: beta1 != 2, H1: beta2 != 1
R <- rbind(c(1,0,0),
c(0,1,0),
c(0,0,1))
r <- matrix( c(-3,2,1), nrow=3 )
waldTest( R=R, thetaHat=MLE, r=r, Sigma=Cov)