groc {groc}R Documentation

groc method

Description

Generalized regression on orthogonal components.

Usage

## Default S3 method:
groc(formula, ncomp, data, subset, na.action, plsrob =
                 FALSE, method = c("lm", "lo", "s", "lts"), D = NULL,
                 gamma = 0.75, Nc = 10, Ng = 20, scale = FALSE, Cpp =
                 TRUE, model = TRUE, x = FALSE, y = FALSE, sp = NULL, ...)
groc(...)

Arguments

formula

a model formula. Most of the lm formula constructs are supported. See below.

ncomp

the number of components (orthogonal components) to include in the model.

data

an optional data frame with the data to fit the model from.

subset

an optional vector specifying a subset of observations to be used in the fitting process.

na.action

a function which indicates what should happen when the data contain missing values.

plsrob

logical. If TRUE, we use the D=covrob measure of dependence with the least trimmed squares method="lts".

method

character giving the name of the method to use. The user can supply his own function. The methods available are linear models, "lm", local polynomials, "lo", smoothing splines, "s", and least trimmed squares, "lts".

D

function with two arguments, each one being a vector, which measures the dependence between two variables using n observations from them. If NULL, the covariance measure will be used. The user can supply his own function.

gamma

parameter used with the option plsrob=TRUE. It defines the quantile used to compute the "lts" regression. The default gamma=0.75 gives a breakdown of 25% for a good compromise between robustness and efficiency. The value gamma=0.5 gives the maximal breakdown of 50%.

Nc

Integer, Number of cycles in the grid algorithm.

Ng

Integer, Number of points for the grid in the grid algorithm.

scale

Logical, Should we scale the data.

Cpp

Logical, if TRUE this function will use a C++ implementation of the grid algorithm. The FALSE value should not be used, unless to get a better understanding of the grid algorithm or to compare the speed of computation between R and C++ versions of this algorithm

model

a logical. If TRUE, the model frame is returned.

x

a logical. If TRUE, the model matrix is returned.

y

a logical. If TRUE, the response is returned.

sp

A vector of smoothing parameters can be provided here. Smoothing parameters must be supplied in the order that the smooth terms appear in the model formula. Negative elements indicate that the parameter should be estimated, and hence a mixture of fixed and estimated parameters is possible. 'length(sp)' should be equal to 'ncomp' and corresponds to the number of underlying smoothing parameters.

...

further arguments to be passed to or from methods.

Value

Y

vector or matrix of responses.

fitted.values

an array of fitted values.

residuals

residuals

T

a matrix of orthogonal components (scores). Each column corresponds to a component.

R

a matrix of directions (loadings). Each column is a direction used to obtain the corresponding component (scores).

Gobjects

contain the objects produced by the fit of the responses on the orthogonal components.

Hobjects

contain the objects produced by the "lts" fit of each deflated predictors on the orthogonal components. Hobjects are produced when plsrob=TRUE.

B

matrix of coefficients produced by the "lm" fit of each deflated predictors on the last component. B is produced when plsrob=FALSE.

Xmeans

a vector of means of the X variables.

Ymeans

a vector of means of the Y variables.

D

Dependence measure used.

V

a matrix whose columns contain the right singular vectors of the data. Computed in the preprocessing to principal component scores when the number of observations is less than the number of predictors.

dnnames

dimnames of 'fitted.values'

ncomp

the number of components used in the modelling.

method

the method used.

scale

Logical. TRUE if the responses have been scaled.

call

the function call.

terms

the model terms.

plsrob

Logical. If plsrob=TRUE, a robust partial least squares fit.

model

if model=TRUE, the model frame.

Author(s)

Martin Bilodeau (bilodeau@dms.umontreal.ca) and Pierre Lafaye de Micheaux (lafaye@unsw.edu.au) and Smail Mahdi (smail.mahdi@cavehill.uwi.edu)

References

Martin Bilodeau, Pierre Lafaye de Micheaux, Smail Mahdi (2015), The R Package groc for Generalized Regression on Orthogonal Components, Journal of Statistical Software, 65(1), 1-29,
https://www.jstatsoft.org/v65/i01/

Examples


## Not run: 
library(MASS)
########################
# Codes for Example 1  #
########################
require("groc")
data("wood")
out <- groc(y ~ x1 + x2 + x3 + x4 + x5, ncomp = 1, data = wood, 
             D = corrob, method = "lts")
corrob(wood$y, fitted(out)) ^ 2
plot(out)

########################
# Codes for Example 2  #
########################
data("trees")
out <- groc(Volume ~ Height + Girth, ncomp = 1, D = spearman, 
             method = "s", data = trees)
cor(trees$Volume, fitted(out)) ^ 2
plot(out$T, trees$Volume, xlab = "First component",
     ylab = "Volume", pch = 20)
lines(sort(out$T), fitted(out)[order(out$T)])
out <- boxcox(Volume ~ Height + Girth, data = trees, 
              lambda = seq(-0.5, 0.5, length = 100), plotit = FALSE)
lambda <- out$x[which.max(out$y)]
out <- lm(Volume ^ lambda ~ Height + Girth, data = trees)
cor(trees$Volume, fitted(out)^(1/lambda)) ^ 2

########################
# Codes for Example 3  #
########################
data("wood")
plsr.out <- plsr(y ~ x1 + x2 + x3 + x4 + x5, data = wood)
groc.out <- groc(y ~ x1 + x2 + x3 + x4 + x5, data = wood)
apply(abs((fitted(plsr.out) - fitted(groc.out)) / 
          fitted(plsr.out)), 3, max) * 100

########################
# Codes for Example 4  #
########################
set.seed(1)
n <- 200
x1 <- runif(n, -1, 1)
x2 <- runif(n, -1, 1)
y <- x1 * x2 + rnorm(n, 0, sqrt(.04))
data <- data.frame(x1 = x1, x2 = x2, y = y)
plsr.out <- plsr(y ~ x1 + x2, data = data)
groc.out <- groc(y ~ x1 + x2, D = dcov, method = "s", data = data)
plsr.v <- crossval(plsr.out, segment.type = "consecutive")
groc.v <- grocCrossval(groc.out, segment.type = "consecutive")
groc.v$validation$PRESS
plsr.v$validation$PRESS
gam.data <- data.frame(y = y, t1 = groc.out$T[, 1], t2 = groc.out$T[, 2])
gam.out <- gam(y ~ s(t1) + s(t2), data = gam.data)
par(mfrow = c(1, 2))
plot(gam.out)
par(mfrow = c(1, 1))
PRESS <- 0
for(i in 1 : 10){
  data.in <- data[-(((i - 1) * 20 + 1) : (i * 20)), ]
  data.out <- data[((i - 1) * 20 + 1) : (i * 20), ]
  ppr.out <- ppr(y ~ x1 + x2, nterms = 2, optlevel = 3, data = data.in)
  PRESS <- PRESS + sum((predict(ppr.out, newdata = data.out)-data.out$y) ^ 2)
}
PRESS

########################
# Codes for Example 5  #
########################
data("yarn")
dim(yarn$NIR)
n <- nrow(yarn)
system.time(plsr.out <- plsr(density ~ NIR, ncomp = n - 2, data = yarn))
system.time(groc.out <- groc(density ~ NIR, Nc = 20, ncomp = n - 2, data = yarn))
max(abs((fitted(plsr.out) - fitted(groc.out)) / fitted(plsr.out))) * 100
plsr.v <- crossval(plsr.out, segments = n, trace = FALSE)
plsr.v$validation$PRESS
groc.v <- grocCrossval(groc.out, segments = n, trace = FALSE)
groc.v$validation$PRESS
groc.v$validation$PREMAD

########################
# Codes for Example 6  #
########################
data("prim7")
prim7.out <- groc(X1 ~ ., ncomp = 3, D = dcov, method = "s", data = prim7)
prim7.out$R
pca <- princomp(~ ., data = as.data.frame(prim7[, -1]))
prim7.pca <- data.frame(X1 = prim7$X1, scores = pca$scores)
prim7.pca.out <- groc(X1 ~ ., ncomp = 3, D = dcov, method = "s", 
                       data = prim7.pca)
pca$loadings 
groc.v <- grocCrossval(prim7.out, segment.type = "consecutive")
groc.v$validation$PRESS
plsr.out <- plsr(X1 ~ ., ncomp = 3, data = prim7)
plsr.v <- crossval(plsr.out, segment.type = "consecutive")
plsr.v$validation$PRESS
PRESS <- 0
for(i in 1 : 10){
  data.in <- prim7[-(((i - 1) * 50 + 1) : (i * 50)), ]
  data.out <- prim7[((i - 1) * 50 + 1) : (i * 50), ]
  ppr.out <- ppr(X1 ~ ., nterms = 3, optlevel = 3, data = data.in)
  PRESS <- PRESS + sum((predict(ppr.out, newdata = data.out) - data.out$X1) ^ 2)
}
PRESS

########################
# Codes for Example 7  #
########################
n <- 50 ; B <- 30
mat.cor <- matrix(0, nrow = B, ncol = 3) ; mat.time <- matrix(0, nrow = B, ncol = 3)
for (i in 1:B) {
 X <- matrix(runif(n * 5, -1, 1), ncol = 5)
 A <- matrix(runif(n * 50, -1, 1), nrow = 5)
 y <- (X[,1] + X[,2])^2 + (X[,1] + 5 * X[,2])^2 + rnorm(n)
 X <- cbind(X, X 
 D <- data.frame(X = X, y = y)
 mat.time[i,1] <- system.time(out1 <- plsr(y ~ X, , ncomp = 2, data = D))[1]
 mat.time[i,2] <- system.time(out2 <- ppr(y ~ X, , nterms = 2, data = D))[1]
 mat.time[i,3] <- system.time(out3 <- groc(y ~ X, D = dcov, method = "s", ncomp = 2, data = D))[1]
 mat.cor[i,] <- cor(y, cbind(fitted(out1)[,,2], fitted(out2), fitted(out3)[,,2]))
}
colMeans(mat.cor)
colMeans(mat.time)

########################
# Codes for Example 8  #
########################
data("oliveoil")
n <- nrow(oliveoil)
plsr.out <- plsr(sensory ~ chemical, data = oliveoil, method = "simpls")
groc.out <- groc(sensory ~ chemical, data = oliveoil)
max(abs((fitted(plsr.out) - fitted(groc.out)) / fitted(plsr.out))) * 100
groc.v <- grocCrossval(groc.out, segments = n)
groc.v$validation$PRESS
colMeans(groc.v$validation$PRESS)
Y <- oliveoil$sensory
for (j in 1 : ncol(Y)) print(cor(Y[, j], fitted(groc.out)[, j, 2]))

########################
# Codes for Example 9  #
########################
require("ppls")
data("cookie")
X <- as.matrix(log(cookie[1 : 40, 51 : 651]))
Y <- as.matrix(cookie[1 : 40, 701 : 704])
X <- X[, 2 : 601] - X[, 1 : 600]
data <- data.frame(Y = I(Y), X = I(X))
n <- nrow(data)
q <- ncol(Y)
xl <- "Wavelength index"
yl <- "First differences of log(1/reflectance)"
matplot(1:ncol(X), t(X), lty = 1, xlab = xl, ylab = yl, type = "l")
out1 <- plsr(Y ~ X, ncomp = n - 2, data = data)
cv <- crossval(out1, segments = n)
cv.mean <- colMeans(cv$validation$PRESS)
plot(cv.mean, xlab = "h", ylab = "Average PRESS", pch = 20)
h <- 3
for (j in 1 : q) print(cor(Y[, j], fitted(out1)[, j, h]))
set.seed(1)
out2 <- groc(Y ~ X, ncomp = h, data = data, plsrob = TRUE)
for (j in 1 : q) print(corrob(Y[, j], fitted(out2)[, j, h]))
plot(out2)

########################
# Codes for Example 10 #
########################
set.seed(2)
n <- 30
t1 <- sort(runif(n, -1, 1))
y <- t1 + rnorm(n, mean = 0, sd = .05)
y[c(14, 15, 16)] <- y[c(14, 15, 16)] + .5
data <- data.frame(x1 = t1, x2 = 2 * t1, x3 = -1.5 * t1, y = y)
out <- groc(y ~ x1 + x2 + x3, ncomp = 1, data = data, plsrob = TRUE)
tau <- scaleTau2(residuals(out), mu.too = TRUE)
std.res <- scale(residuals(out), center = tau[1], scale = tau[2])
index <- which(abs(std.res)>3)
prm.res <- read.table("prmresid.txt")
plot(t1, y, pch = 20)
matlines(t1, cbind(t1,fitted(out), y - prm.res), lty = 1 : 3)
legend(.4, -.5 , legend = c("true model","groc", "prm"), lty = 1 : 3)
text(t1[index], y[index], index, cex = .8, pos = 3)

########################
# Codes for Example 11 #
########################
data("pulpfiber")
X <- as.matrix(pulpfiber[, 1:4])
Y <- as.matrix(pulpfiber[, 5:8])
data <- data.frame(X = I(X), Y = I(Y))
set.seed(55481)
out.rob <- groc(Y ~ X, data = data, plsrob = TRUE)
plot(out.rob, cex = .6)
out.simpls <- groc(Y ~ X, data = data)
cv.rob <- grocCrossval(out.rob,segment.type = "consecutive")
PREMAD.rob <- cv.rob$validation$PREMAD[,4]
PREMAD.rob
cv.simpls <- grocCrossval(out.simpls,segment.type = "consecutive")
PREMAD.simpls <- cv.simpls$validation$PREMAD[,4]
PREMAD.simpls
(PREMAD.rob - PREMAD.simpls) / PREMAD.simpls * 100

## End(Not run)


[Package groc version 1.0.9 Index]