measures {greybox} | R Documentation |
Error measures for the provided forecasts
Description
Function calculates several error measures using the provided forecasts and the data for the holdout sample.
Usage
measures(holdout, forecast, actual, digits = NULL, benchmark = c("naive",
"mean"))
Arguments
holdout |
The vector of the holdout values. |
forecast |
The vector of forecasts produced by a model. |
actual |
The vector of actual in-sample values. |
digits |
Number of digits of the output. If |
benchmark |
The character variable, defining what to use as
benchmark for relative measures. Can be either |
Value
The functions returns the named vector of errors:
ME,
MAE,
MSE
MPE,
MAPE,
MASE,
sMAE,
RMSSE,
sMSE,
sCE,
rMAE,
rRMSE,
rAME,
asymmetry,
sPIS.
For the details on these errors, see Errors.
Author(s)
Ivan Svetunkov, ivan@svetunkov.ru
References
Svetunkov, I. (2017). Naughty APEs and the quest for the holy grail. https://openforecast.org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/
Fildes R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8, pp.81-98.
Hyndman R.J., Koehler A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22, pp.679-688.
Petropoulos F., Kourentzes N. (2015). Forecast combinations for intermittent demand. Journal of the Operational Research Society, 66, pp.914-924.
Wallstrom P., Segerstedt A. (2010). Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128, pp.625-636.
Davydenko, A., Fildes, R. (2013). Measuring Forecasting Accuracy: The Case Of Judgmental Adjustments To Sku-Level Demand Forecasts. International Journal of Forecasting, 29(3), 510-522. doi:10.1016/j.ijforecast.2012.09.002
Examples
y <- rnorm(100,10,2)
ourForecast <- rep(mean(y[1:90]),10)
measures(y[91:100],ourForecast,y[1:90],digits=5)