dtplnorm {greybox} | R Documentation |
Three Parameter Log Normal Distribution
Description
Density, cumulative distribution, quantile functions and random number generation for the 3 parameter log normal distribution with the location parameter mu, scale sigma (which corresponds to standard deviation in normal distribution) and shifting parameter shift.
Usage
dtplnorm(q, mu = 0, sigma = 1, shift = 0, log = FALSE)
ptplnorm(q, mu = 0, sigma = 1, shift = 0)
qtplnorm(p, mu = 0, sigma = 1, shift = 0)
rtplnorm(n = 1, mu = 0, sigma = 1, shift = 0)
Arguments
q |
vector of quantiles. |
mu |
vector of location parameters (means). |
sigma |
vector of scale parameters. |
shift |
vector of shift parameters. |
log |
if |
p |
vector of probabilities. |
n |
number of observations. Should be a single number. |
Details
The distribution has the following density function:
f(x) = 1/(x-a) 1/sqrt(2 pi) exp(-(log(x-a)-mu)^2 / (2 sigma^2))
Both ptplnorm
and qtplnorm
are returned for the lower
tail of the distribution.
The function is based on the lnorm functions from stats package, introducing the shift parameter.
Value
Depending on the function, various things are returned (usually either vector or scalar):
-
dtplnorm
returns the density function value for the provided parameters. -
ptplnorm
returns the value of the cumulative function for the provided parameters. -
qtplnorm
returns quantiles of the distribution. Depending on what was provided inp
,mu
andsigma
, this can be either a vector or a matrix, or an array. -
rtplnorm
returns a vector of random variables generated from the tplnorm distribution. Depending on what was provided inmu
andsigma
, this can be either a vector or a matrix or an array.
Author(s)
Ivan Svetunkov, ivan@svetunkov.ru
References
Sangal, B. P., & Biswas, A. K. (1970). The 3-Parameter Distribution Applications in Hydrology. Water Resources Research, 6(2), 505–515. doi:10.1029/WR006i002p00505
See Also
Examples
x <- dtplnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")
x <- ptplnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")
qtplnorm(c(0.025,0.975), 0, c(1,2), 1)
x <- rtplnorm(1000, 0, 1, 1)
hist(x)