Malliavin_Geometric_Asian_Greeks {greeks} | R Documentation |
Computes the Greeks of a geometric Asian option with the Malliavin Monte Carlo Method in the Black Scholes- or Jump diffusion model
Description
In contrast to Asian options (see Malliavin_Asian_Greeks), geometric Asian
options evaluate the geometric average
\exp \left( \frac{1}{T} \int_0^T \ln S_t dt \right)
, where
S_t
is the price of the underlying asset at time t
and T
is
the time-to-maturity of the option (see
en.wikipedia.org/wiki/Asian_option#European_Asian_call_and_put_options_with_geometric_averaging). For more details on the definition of Greeks see Greeks, and for a description of the Malliavin Monte Carlo Method for Greeks see for example (Hudde & Rüschendorf, 2023).
Usage
Malliavin_Geometric_Asian_Greeks(
initial_price = 100,
exercise_price = 100,
r = 0,
time_to_maturity = 1,
volatility = 0.3,
dividend_yield = 0,
payoff = "call",
greek = c("fair_value", "delta", "rho", "vega", "theta", "gamma"),
model = "black_scholes",
lambda = 0.2,
alpha = 0.3,
jump_distribution = function(n) stats::rt(n, df = 3),
steps = round(time_to_maturity * 252),
paths = 10000,
seed = 1,
antithetic = FALSE
)
Arguments
initial_price |
|
exercise_price |
|
r |
|
time_to_maturity |
|
volatility |
|
dividend_yield |
|
payoff |
|
greek |
|
model |
|
lambda |
|
alpha |
|
jump_distribution |
|
steps |
|
paths |
|
seed |
|
antithetic |
|
Value
Named vector containing the values of the Greeks specified in the
parameter greek
.
References
Hudde, A., & Rüschendorf, L. (2023). European and Asian Greeks for Exponential Lévy Processes. Methodol Comput Appl Probab, 25 (39). doi:10.1007/s11009-023-10014-5
See Also
BS_Geometric_Asian_Greeks for exact and fast computation in the Black Scholes model and for put- and call payoff functions
Examples
Malliavin_Asian_Greeks(initial_price = 110, exercise_price = 100,
r = 0.02, time_to_maturity = 4.5, dividend_yield = 0.015, volatility = 0.22,
greek = c("fair_value", "delta", "rho"), payoff = "put")